BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

693 related articles for article (PubMed ID: 28556204)

  • 1. Optimal combination of anti-scatter grids and software correction for CBCT imaging.
    Stankovic U; Ploeger LS; van Herk M; Sonke JJ
    Med Phys; 2017 Sep; 44(9):4437-4451. PubMed ID: 28556204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.
    Stankovic U; van Herk M; Ploeger LS; Sonke JJ
    Med Phys; 2014 Jun; 41(6):061910. PubMed ID: 24877821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed large-area focused grid for scatter reduction in cone-beam CT.
    Cobos SF; Norley CJ; Nikolov HN; Holdsworth DW
    Med Phys; 2023 Jan; 50(1):240-258. PubMed ID: 36215176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of scatter rejection and correction performance of 2D antiscatter grids in cone beam computed tomography.
    Park Y; Alexeev T; Miller B; Miften M; Altunbas C
    Med Phys; 2021 Apr; 48(4):1846-1858. PubMed ID: 33554377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images.
    Niu T; Sun M; Star-Lack J; Gao H; Fan Q; Zhu L
    Med Phys; 2010 Oct; 37(10):5395-406. PubMed ID: 21089775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo evaluation of scatter mitigation strategies in cone-beam CT.
    Lazos D; Williamson JF
    Med Phys; 2010 Oct; 37(10):5456-70. PubMed ID: 21089782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation and Clinical Application of a Commercially Available Iterative Reconstruction Algorithm for CBCT-Based IGRT.
    Mao W; Liu C; Gardner SJ; Siddiqui F; Snyder KC; Kumarasiri A; Zhao B; Kim J; Wen NW; Movsas B; Chetty IJ
    Technol Cancer Res Treat; 2019 Jan; 18():1533033818823054. PubMed ID: 30803367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planning CT-guided robust and fast cone-beam CT scatter correction using a local filtration technique.
    Cui H; Jiang X; Fang C; Zhu L; Yang Y
    Med Phys; 2021 Nov; 48(11):6832-6843. PubMed ID: 34662433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region.
    Elstrøm UV; Muren LP; Petersen JB; Grau C
    Acta Oncol; 2011 Aug; 50(6):908-17. PubMed ID: 21767191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a two-dimensional Moire-free antiscatter grid for cone-beam computed tomography.
    Kim J; Kang Y; Hwang T; Park M; Chung W
    Med Phys; 2023 Jun; 50(6):3435-3444. PubMed ID: 36748167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical scatter correction: CBCT scatter artifact reduction without prior information.
    Trapp P; Maier J; Susenburger M; Sawall S; Kachelrieß M
    Med Phys; 2022 Jul; 49(7):4566-4584. PubMed ID: 35390181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional antiscatter grid: A novel scatter rejection device for Cone-beam computed tomography.
    Alexeev T; Kavanagh B; Miften M; Altunbas C
    Med Phys; 2018 Feb; 45(2):529-534. PubMed ID: 29235120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative CBCT pipeline based on 2D antiscatter grid and grid-based scatter sampling for image-guided radiation therapy.
    Bayat F; Ruan D; Miften M; Altunbas C
    Med Phys; 2023 Dec; 50(12):7980-7995. PubMed ID: 37665760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous scatter rejection and correction method using 2D antiscatter grids for CBCT.
    Yu Z; Park Y; Altunbas C
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11312():. PubMed ID: 32313356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified scatter rejection and correction method for cone beam computed tomography.
    Altunbas C; Park Y; Yu Z; Gopal A
    Med Phys; 2021 Mar; 48(3):1211-1225. PubMed ID: 33378551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of soft-tissue contrast in cone-beam CT using an anti-scatter grid with a sparse sampling approach.
    Cho S; Lim S; Kim C; Wi S; Kwon T; Youn WS; Lee SH; Kang BS; Cho S
    Phys Med; 2020 Feb; 70():1-9. PubMed ID: 31931280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission characteristics of a two dimensional antiscatter grid prototype for CBCT.
    Altunbas C; Kavanagh B; Alexeev T; Miften M
    Med Phys; 2017 Aug; 44(8):3952-3964. PubMed ID: 28513847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility study of a synchronized-moving-grid (SMOG) system to improve image quality in cone-beam computed tomography (CBCT).
    Ren L; Yin FF; Chetty IJ; Jaffray DA; Jin JY
    Med Phys; 2012 Aug; 39(8):5099-110. PubMed ID: 22894435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scatter Reduction and Correction for Dual-Source Cone-Beam CT Using Prepatient Grids.
    Ren L; Chen Y; Zhang Y; Giles W; Jin J; Yin FF
    Technol Cancer Res Treat; 2016 Jun; 15(3):416-27. PubMed ID: 26009495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.