These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28556224)

  • 1. THE EVOLUTION OF WING DIMORPHISM IN INSECTS.
    Roff DA
    Evolution; 1986 Sep; 40(5):1009-1020. PubMed ID: 28556224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. THE EVOLUTION OF ALTERNATE MORPHOLOGIES: FITNESS AND WING MORPHOLOGY IN MALE SAND CRICKETS.
    Roff DA; Fairbairn DJ
    Evolution; 1993 Oct; 47(5):1572-1584. PubMed ID: 28564895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. THE GENETIC BASIS OF THE TRADE-OFF BETWEEN CALLING AND WING MORPH IN MALES OF THE CRICKET GRYLLUS FIRMUS.
    Crnokrak P; Roff DA
    Evolution; 1998 Aug; 52(4):1111-1118. PubMed ID: 28565217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Analysis Suggests Genes Expressed Stage-Independently and Stage-Dependently Modulating the Wing Dimorphism of the Brown Planthopper.
    Zhang C; Liu XD
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31878073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and diurnal variation in the juvenile hormone titer in a wing-polymorphic cricket: implications for the evolution of life histories and dispersal.
    Zera AJ; Cisper G
    Physiol Biochem Zool; 2001; 74(2):293-306. PubMed ID: 11247748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Variation in Body Size and Wing Dimorphism Correlates With Environmental Conditions in the Grasshopper Dichroplus vittatus (Orthoptera: Acrididae).
    Rosetti N; Remis MI
    Environ Entomol; 2018 Jun; 47(3):519-526. PubMed ID: 29672724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wing dimorphism in Gryllus rubens: genetic basis of morph determination and fertility differences between morphs.
    Zera AJ; Rankin MA
    Oecologia; 1989 Aug; 80(2):249-255. PubMed ID: 28313115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cost of being able to fly: a study of wing polymorphism in two species of crickets.
    Roff DA
    Oecologia; 1984 Jul; 63(1):30-37. PubMed ID: 28311162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology and ecology of dispersal polymorphism in insects.
    Zera AJ; Denno RF
    Annu Rev Entomol; 1997; 42():207-30. PubMed ID: 15012313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of the flightin gene in the wing-dimorphic planthopper, Nilaparvata lugens, and its evolution in Pancrustacea.
    Xue J; Zhang XQ; Xu HJ; Fan HW; Huang HJ; Ma XF; Wang CY; Chen JG; Cheng JA; Zhang CX
    Insect Biochem Mol Biol; 2013 May; 43(5):433-43. PubMed ID: 23459170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A morph-specific daily cycle in the rate of JH biosynthesis underlies a morph-specific daily cycle in the hemolymph JH titer in a wing-polymorphic cricket.
    Zhao Z; Zera AJ
    J Insect Physiol; 2004 Oct; 50(10):965-73. PubMed ID: 15518664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Juvenile hormone titer and morph-specific reproduction in the wing-polymorphic cricket, Gryllus firmus.
    Cisper G; Zera AJ; Borst DW
    J Insect Physiol; 2000 Apr; 46(4):585-596. PubMed ID: 12770222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EVIDENCE THAT THE MAGNITUDE OF THE TRADE-OFF IN A DICHOTOMOUS TRAIT IS FREQUENCY DEPENDENT.
    Roff DA
    Evolution; 1994 Oct; 48(5):1650-1656. PubMed ID: 28568415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THE EVOLUTION OF THRESHOLD TRAITS: A QUANTITATIVE GENETIC ANALYSIS OF THE PHYSIOLOGICAL AND LIFE-HISTORY CORRELATES OF WING DIMORPHISM IN THE SAND CRICKET.
    Roff DA; Stirling G; Fairbairn DJ
    Evolution; 1997 Dec; 51(6):1910-1919. PubMed ID: 28565097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: a meta-analysis.
    Guerra PA
    Biol Rev Camb Philos Soc; 2011 Nov; 86(4):813-35. PubMed ID: 21199288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fecundity in relation to wing-morph of three closely related species of the melanocephalus group of the genus Calathus (Coleoptera: Carabidae).
    Aukema B
    Oecologia; 1991 Jun; 87(1):118-126. PubMed ID: 28313361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing morph-related differences in developmental pattern of accessory gland proteins in adult males of Pyrrhocoris apterus (L.) and their endocrine control.
    Socha R; Sula J; Kodrík D
    J Insect Physiol; 2004 Oct; 50(10):893-901. PubMed ID: 15518657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morph-specific life-history correlations in a wing-dimorphic water strider.
    Hyun H; Han CS
    J Evol Biol; 2021 Aug; 34(8):1340-1346. PubMed ID: 34109692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in fuel use in the flight muscles of wing-dimorphic Gryllus firmus and implications for morph-specific dispersal.
    Zhang BC; Jiang CJ; An CJ; Zhang QW; Zhao ZW
    Environ Entomol; 2011 Dec; 40(6):1566-71. PubMed ID: 22217774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wing morph-specific differences in the metabolism and endocrine control of reserve mobilization in adult males of a flightless bug, Pyrrhocoris apterus (L.) (Heteroptera).
    Socha R; Kodrík D; Sula J
    J Comp Physiol B; 2005 Nov; 175(8):557-65. PubMed ID: 16088393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.