These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28556254)

  • 1. The Influence of pH and Sodium Hydroxide Exposure Time on Glucosamine and Acrylamide Levels in California-Style Black Ripe Olives.
    Charoenprasert S; Zweigenbaum JA; Zhang G; Mitchell AE
    J Food Sci; 2017 Jul; 82(7):1574-1581. PubMed ID: 28556254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of California-style black ripe olive processing on the formation of acrylamide.
    Charoenprasert S; Mitchell A
    J Agric Food Chem; 2014 Aug; 62(34):8716-21. PubMed ID: 25110929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of processing conditions on acrylamide content in black ripe olives.
    Casado FJ; Montaño A
    J Agric Food Chem; 2008 Mar; 56(6):2021-7. PubMed ID: 18303816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry quantitation of polyphenols and secoiridoids in california-style black ripe olives and dry salt-cured olives.
    Melliou E; Zweigenbaum JA; Mitchell AE
    J Agric Food Chem; 2015 Mar; 63(9):2400-5. PubMed ID: 25668132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Packing black ripe olives in acid conditions.
    Romero C; Brenes M; García-Serrano P; Montaño A; Medina E; García-García P
    Food Chem; 2021 Feb; 337():127751. PubMed ID: 32777575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Ripe Olive Processing with a Single Lye Treatment.
    Brenes M; Romero C; García-García P
    J Food Sci; 2017 Sep; 82(9):2078-2084. PubMed ID: 28796287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Study of Four Analytical Methods for the Routine Determination of Acrylamide in Black Ripe Olives.
    Crawford LM; Wang SC
    J Agric Food Chem; 2019 Nov; 67(46):12633-12641. PubMed ID: 31083941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Industrial Strategies to Reduce Acrylamide Formation in Californian-Style Green Ripe Olives.
    Martín-Vertedor D; Fernández A; Mesías M; Martínez M; Díaz M; Martín-Tornero E
    Foods; 2020 Aug; 9(9):. PubMed ID: 32878306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitation of Oleuropein and Related Phenolics in Cured Spanish-Style Green, California-Style Black Ripe, and Greek-Style Natural Fermentation Olives.
    Johnson R; Melliou E; Zweigenbaum J; Mitchell AE
    J Agric Food Chem; 2018 Mar; 66(9):2121-2128. PubMed ID: 29424233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of iron redox state on black ripe olive processing.
    García P; Romero C; Brenes M
    J Sci Food Agric; 2018 Sep; 98(12):4653-4658. PubMed ID: 29528506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quarantine strategies for olive fruit fly (Diptera: Tephritidae): low-temperature storage, brine, and host relations.
    Yokoyama VY; Miller GT
    J Econ Entomol; 2004 Aug; 97(4):1249-53. PubMed ID: 15384334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined use of nitrogen and coatings to improve the quality of mechanically harvested Manzanilla olives.
    Ramírez E; Sánchez AH; Romero C; Brenes M
    Food Chem; 2015 Mar; 171():50-5. PubMed ID: 25308641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of the use of sarcosine, proline and glycine as acrylamide inhibitors in ripe olive processing.
    Sánchez AH; Beato VM; López-López A; Montaño A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(2):242-9. PubMed ID: 24294998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea).
    Sansone-Land A; Takeoka GR; Shoemaker CF
    Food Chem; 2014 Apr; 149():285-95. PubMed ID: 24295708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of osmotic dehydration of olives as pre-fermentation treatment and partial substitution of sodium chloride by monosodium glutamate in the fermentation profile of Kalamata natural black olives.
    Bonatsou S; Iliopoulos V; Mallouchos A; Gogou E; Oikonomopoulou V; Krokida M; Taoukis P; Panagou EZ
    Food Microbiol; 2017 May; 63():72-83. PubMed ID: 28040184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Amberlite Macroporous Resins To Reduce Bitterness in Whole Olives for Improved Processing Sustainability.
    Johnson R; Mitchell AE
    J Agric Food Chem; 2019 Feb; 67(5):1546-1553. PubMed ID: 30636418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of inert atmosphere on the postharvest browning of manzanilla olives and optimization by response surface methodology of the aqueous treatments.
    Segovia-Bravo KA; García-García P; López-López A; Garrido-Fernández A
    J Food Sci; 2012 May; 77(5):S194-201. PubMed ID: 22489596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hurdle technology on Monascus ruber growth in green table olives: a response surface methodology approach.
    Cappato LP; Martins AMD; Ferreira EHR; Rosenthal A
    Braz J Microbiol; 2018; 49(1):112-119. PubMed ID: 29100931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of olives' storage conditions on the formation of volatile phenols and their role in off-odor formation in the oil.
    Vichi S; Romero A; Gallardo-Chacón J; Tous J; López-Tamames E; Buxaderas S
    J Agric Food Chem; 2009 Feb; 57(4):1449-55. PubMed ID: 19178282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of kinaesthetic properties of in-brine table olives by microstructure of fracture surface, sensory evaluation and texture profile analysis (TPA).
    Lanza B; Amoruso F
    J Sci Food Agric; 2018 Aug; 98(11):4142-4150. PubMed ID: 29393523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.