BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2855645)

  • 1. Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle.
    Schneider MF; Simon BJ
    J Physiol; 1988 Nov; 405():727-45. PubMed ID: 2855645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of partial sarcoplasmic reticulum calcium depletion on calcium release in frog cut muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Jong DS; Chandler WK
    J Gen Physiol; 1998 Sep; 112(3):263-95. PubMed ID: 9725889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ sparks in frog skeletal muscle: generation by one, some, or many SR Ca2+ release channels?
    Schneider MF
    J Gen Physiol; 1999 Mar; 113(3):365-72. PubMed ID: 10051512
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantal Properties of Voltage-Dependent Ca
    Olivera JF; Pizarro G
    J Membr Biol; 2024 Apr; 257(1-2):37-50. PubMed ID: 38460011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plateau potentials contribute to myotonia in mouse models of myotonia congenita.
    Wang X; Dupont C; Grant D; Voss AA; Rich MM
    Exp Neurol; 2023 Mar; 361():114303. PubMed ID: 36563835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disrupted T-tubular network accounts for asynchronous calcium release in MTM1-deficient skeletal muscle.
    Szentesi P; Dienes B; Kutchukian C; Czirjak T; Buj-Bello A; Jacquemond V; Csernoch L
    J Physiol; 2023 Jan; 601(1):99-121. PubMed ID: 36408764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the mechanisms of excitation-contraction coupling in frog skeletal muscle based on measurements of [Ca
    Olivera JF; Pizarro G
    J Muscle Res Cell Motil; 2018 Apr; 39(1-2):41-60. PubMed ID: 30143958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis?
    Hernández-Ochoa EO; Schneider MF
    Skelet Muscle; 2018 Jul; 8(1):22. PubMed ID: 30025545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between form and function throughout the history of excitation-contraction coupling.
    Franzini-Armstrong C
    J Gen Physiol; 2018 Feb; 150(2):189-210. PubMed ID: 29317466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calsequestrin depolymerizes when calcium is depleted in the sarcoplasmic reticulum of working muscle.
    Manno C; Figueroa LC; Gillespie D; Fitts R; Kang C; Franzini-Armstrong C; Rios E
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):E638-E647. PubMed ID: 28069951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical Role of Intracellular RyR1 Calcium Release Channels in Skeletal Muscle Function and Disease.
    Hernández-Ochoa EO; Pratt SJP; Lovering RM; Schneider MF
    Front Physiol; 2015; 6():420. PubMed ID: 26793121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional properties of ryanodine receptor type 3 in zebrafish tail muscle.
    Perni S; Marsden KC; Escobar M; Hollingworth S; Baylor SM; Franzini-Armstrong C
    J Gen Physiol; 2015 Mar; 145(3):173-84. PubMed ID: 25667412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of myoplasmic calcium movements during excitation-contraction coupling in frog twitch and mouse fast-twitch muscle fibers.
    Hollingworth S; Baylor SM
    J Gen Physiol; 2013 May; 141(5):567-83. PubMed ID: 23630340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major contribution of sarcoplasmic reticulum Ca(2+) depletion during long-lasting activation of skeletal muscle.
    Robin G; Allard B
    J Gen Physiol; 2013 May; 141(5):557-65. PubMed ID: 23630339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle fibers: Inactivated or depleted after long depolarizations?
    Melzer W
    J Gen Physiol; 2013 May; 141(5):517-20. PubMed ID: 23630336
    [No Abstract]   [Full Text] [Related]  

  • 16. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles.
    Barclay CJ
    J Physiol; 2012 Dec; 590(23):6199-212. PubMed ID: 23027818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca(2+) release during the quasi-steady level of release in twitch fibers from frog skeletal muscle.
    Fénelon K; Lamboley CR; Carrier N; Pape PC
    J Gen Physiol; 2012 Oct; 140(4):403-19. PubMed ID: 23008434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular calcium movements during excitation-contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers.
    Baylor SM; Hollingworth S
    J Gen Physiol; 2012 Apr; 139(4):261-72. PubMed ID: 22450485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage clamp methods for the study of membrane currents and SR Ca(2+) release in adult skeletal muscle fibres.
    Hernández-Ochoa EO; Schneider MF
    Prog Biophys Mol Biol; 2012 Apr; 108(3):98-118. PubMed ID: 22306655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and simulation of myoplasmic calcium transients in mouse slow-twitch muscle fibres.
    Hollingworth S; Kim MM; Baylor SM
    J Physiol; 2012 Feb; 590(3):575-94. PubMed ID: 22124146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.