These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 2855645)

  • 41. Caffeine enhances intramembranous charge movement in frog skeletal muscle by increasing cytoplasmic Ca2+ concentration.
    Shirokova N; Ríos E
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):341-56. PubMed ID: 8782100
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye.
    Kovacs L; Rios E; Schneider MF
    J Physiol; 1983 Oct; 343():161-96. PubMed ID: 6606034
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle.
    Baylor SM; Hollingworth S
    J Physiol; 2003 Aug; 551(Pt 1):125-38. PubMed ID: 12813151
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Voltage dependence of membrane charge movement and calcium release in frog skeletal muscle fibres.
    Rakowski RF; Best PM; James-Kracke MR
    J Muscle Res Cell Motil; 1985 Aug; 6(4):403-33. PubMed ID: 3877737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling.
    Brum G; Fitts R; Pizarro G; Ríos E
    J Physiol; 1988 Apr; 398():475-505. PubMed ID: 3260626
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deterministic inactivation of calcium release channels in mammalian skeletal muscle.
    Szentesi P; Kovács L; Csernoch L
    J Physiol; 2000 Nov; 528(Pt 3):447-56. PubMed ID: 11060123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Suppression of calcium release by calcium or procaine in voltage clamped rat skeletal muscle fibres.
    García J; Schneider MF
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):437-45. PubMed ID: 7666366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ca2+ load of guinea-pig ventricular myocytes determines efficacy of brief Ca2+ currents as trigger for Ca2+ release.
    Han S; Schiefer A; Isenberg G
    J Physiol; 1994 Nov; 480 ( Pt 3)(Pt 3):411-21. PubMed ID: 7869256
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle.
    Shirokova N; García J; Pizarro G; Ríos E
    J Gen Physiol; 1996 Jan; 107(1):1-18. PubMed ID: 8741727
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of membrane polarization on sarcoplasmic calcium release in skeletal muscle.
    Miledi R; Nakajima S; Parker I; Takahashi T
    Proc R Soc Lond B Biol Sci; 1981 Sep; 213(1190):1-13. PubMed ID: 6117865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor).
    Tripathy A; Xu L; Mann G; Meissner G
    Biophys J; 1995 Jul; 69(1):106-19. PubMed ID: 7669888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms of inactivation of L-type calcium channels in human atrial myocytes.
    Sun H; Leblanc N; Nattel S
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1625-35. PubMed ID: 9139944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle.
    Sukhareva M; Morrissette J; Coronado R
    Biophys J; 1994 Aug; 67(2):751-65. PubMed ID: 7948689
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calcium transients in single mammalian skeletal muscle fibres.
    Delbono O; Stefani E
    J Physiol; 1993 Apr; 463():689-707. PubMed ID: 8246201
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ca2+ modulation of sarcoplasmic reticulum Ca2+ release in rat skeletal muscle fibers.
    Delbono O
    J Membr Biol; 1995 Jul; 146(1):91-9. PubMed ID: 7563040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells.
    Beuckelmann DJ; Wier WG
    J Physiol; 1988 Nov; 405():233-55. PubMed ID: 2475607
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of partial sarcoplasmic reticulum calcium depletion on calcium release in frog cut muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Jong DS; Chandler WK
    J Gen Physiol; 1998 Sep; 112(3):263-95. PubMed ID: 9725889
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Voltage-dependent and calcium-dependent inactivation of calcium channel current in identified snail neurones.
    Gutnick MJ; Lux HD; Swandulla D; Zucker H
    J Physiol; 1989 May; 412():197-220. PubMed ID: 2557426
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Action of 2,3-butanedione monoxime on calcium signals in frog cut twitch fibres containing antipyrylazo III.
    Maylie J; Hui CS
    J Physiol; 1991 Oct; 442():551-67. PubMed ID: 1798042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.