These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 28557022)
1. Missing binary outcomes under covariate-dependent missingness in cluster randomised trials. Hossain A; DiazOrdaz K; Bartlett JW Stat Med; 2017 Aug; 36(19):3092-3109. PubMed ID: 28557022 [TBL] [Abstract][Full Text] [Related]
2. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials. Hossain A; Diaz-Ordaz K; Bartlett JW Stat Methods Med Res; 2017 Jun; 26(3):1543-1562. PubMed ID: 27177885 [TBL] [Abstract][Full Text] [Related]
3. Properties and pitfalls of weighting as an alternative to multilevel multiple imputation in cluster randomized trials with missing binary outcomes under covariate-dependent missingness. Turner EL; Yao L; Li F; Prague M Stat Methods Med Res; 2020 May; 29(5):1338-1353. PubMed ID: 31293199 [TBL] [Abstract][Full Text] [Related]
4. Imputation strategies for missing binary outcomes in cluster randomized trials. Ma J; Akhtar-Danesh N; Dolovich L; Thabane L; BMC Med Res Methodol; 2011 Feb; 11():18. PubMed ID: 21324148 [TBL] [Abstract][Full Text] [Related]
5. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study. Ma J; Raina P; Beyene J; Thabane L BMC Med Res Methodol; 2013 Jan; 13():9. PubMed ID: 23343209 [TBL] [Abstract][Full Text] [Related]
6. Multiple imputation methods for bivariate outcomes in cluster randomised trials. DiazOrdaz K; Kenward MG; Gomes M; Grieve R Stat Med; 2016 Sep; 35(20):3482-96. PubMed ID: 26990655 [TBL] [Abstract][Full Text] [Related]
7. Imputation of missing covariate in randomized controlled trials with a continuous outcome: Scoping review and new results. Kayembe MT; Jolani S; Tan FES; van Breukelen GJP Pharm Stat; 2020 Nov; 19(6):840-860. PubMed ID: 32510791 [TBL] [Abstract][Full Text] [Related]
8. Approaches for missing covariate data in logistic regression with MNAR sensitivity analyses. Ward RC; Axon RN; Gebregziabher M Biom J; 2020 Jul; 62(4):1025-1037. PubMed ID: 31957905 [TBL] [Abstract][Full Text] [Related]
9. Dealing with missing outcome data in randomized trials and observational studies. Groenwold RH; Donders AR; Roes KC; Harrell FE; Moons KG Am J Epidemiol; 2012 Feb; 175(3):210-7. PubMed ID: 22262640 [TBL] [Abstract][Full Text] [Related]
10. Covariate adjustment in estimating the area under ROC curve with partially missing gold standard. Liu D; Zhou XH Biometrics; 2013 Mar; 69(1):91-100. PubMed ID: 23410529 [TBL] [Abstract][Full Text] [Related]
11. A comparison of imputation strategies in cluster randomized trials with missing binary outcomes. Caille A; Leyrat C; Giraudeau B Stat Methods Med Res; 2016 Dec; 25(6):2650-2669. PubMed ID: 24713160 [TBL] [Abstract][Full Text] [Related]
12. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level. Moerbeek M; van Schie S BMC Med Res Methodol; 2016 Jul; 16():79. PubMed ID: 27401771 [TBL] [Abstract][Full Text] [Related]
13. Choosing appropriate analysis methods for cluster randomised cross-over trials with a binary outcome. Morgan KE; Forbes AB; Keogh RH; Jairath V; Kahan BC Stat Med; 2017 Jan; 36(2):318-333. PubMed ID: 27680896 [TBL] [Abstract][Full Text] [Related]
14. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing? Mukaka M; White SA; Terlouw DJ; Mwapasa V; Kalilani-Phiri L; Faragher EB Trials; 2016 Jul; 17():341. PubMed ID: 27450066 [TBL] [Abstract][Full Text] [Related]
15. Assessing treatment effect heterogeneity in the presence of missing effect modifier data in cluster-randomized trials. Blette BS; Halpern SD; Li F; Harhay MO Stat Methods Med Res; 2024 May; 33(5):909-927. PubMed ID: 38567439 [TBL] [Abstract][Full Text] [Related]
16. Intent-to-treat analysis of cluster randomized trials when clusters report unidentifiable outcome proportions. DeSantis SM; Li R; Zhang Y; Wang X; Vernon SW; Tilley BC; Koch G Clin Trials; 2020 Dec; 17(6):627-636. PubMed ID: 32838555 [TBL] [Abstract][Full Text] [Related]
17. Are missing data adequately handled in cluster randomised trials? A systematic review and guidelines. Díaz-Ordaz K; Kenward MG; Cohen A; Coleman CL; Eldridge S Clin Trials; 2014 Oct; 11(5):590-600. PubMed ID: 24902924 [TBL] [Abstract][Full Text] [Related]
18. Accounting for interactions and complex inter-subject dependency in estimating treatment effect in cluster-randomized trials with missing outcomes. Prague M; Wang R; Stephens A; Tchetgen Tchetgen E; DeGruttola V Biometrics; 2016 Dec; 72(4):1066-1077. PubMed ID: 27060877 [TBL] [Abstract][Full Text] [Related]
19. Imputation of Missing Covariates in Randomized Controlled Trials with Continuous Outcomes: Simple, Unbiased and Efficient Methods. Kayembe MT; Jolani S; Tan FES; van Breukelen GJP J Biopharm Stat; 2022 Sep; 32(5):717-739. PubMed ID: 35041565 [TBL] [Abstract][Full Text] [Related]
20. Multiple imputation methods for handling missing data in cost-effectiveness analyses that use data from hierarchical studies: an application to cluster randomized trials. Gomes M; Díaz-Ordaz K; Grieve R; Kenward MG Med Decis Making; 2013 Nov; 33(8):1051-63. PubMed ID: 23913915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]