BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2855722)

  • 1. [3H]-nitrendipine binding sites in normal and cardiomyopathic hamsters: absence of a selective increase in putative calcium channels in cardiomyopathic hearts.
    Howlett SE; Rafuse VF; Gordon T
    Cardiovasc Res; 1988 Nov; 22(11):840-6. PubMed ID: 2855722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium channels in normal and dystrophic hamster cardiac muscle. [3H]nitrendipine binding studies.
    Howlett SE; Gordon T
    Biochem Pharmacol; 1987 Aug; 36(16):2653-9. PubMed ID: 2440447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [3H]-nitrendipine binding in normal and cardiomyopathic hamster hearts: modulation by temperature, verapamil and diltiazem.
    Howlett SE; Gordon T
    J Mol Cell Cardiol; 1990 Sep; 22(9):975-85. PubMed ID: 2177794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radioligand binding and inotropic effects of ryanodine in the cardiomyopathic Syrian hamster.
    Finkel MS; Shen L; Romeo RC; Oddis CV; Salama G
    J Cardiovasc Pharmacol; 1992 Apr; 19(4):610-7. PubMed ID: 1380605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of changes in cardiac calcium channels with hemodynamics in Syrian hamster cardiomyopathy and heart failure.
    Finkel MS; Marks ES; Patterson RE; Speir EH; Steadman KA; Keiser HR
    Life Sci; 1987 Jul; 41(2):153-9. PubMed ID: 2439866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydropyridine receptor binding sites in the cardiomyopathic hamster heart are unchanged from control.
    Bazan E; Sole MJ; Schwartz A; Johnson CL
    J Mol Cell Cardiol; 1991 Feb; 23(2):111-7. PubMed ID: 1648625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in cardiac SR Ca(2+)-release channels during development of heart failure in cardiomyopathic hamsters.
    Ueyama T; Ohkusa T; Hisamatsu Y; Nakamura Y; Yamamoto T; Yano M; Matsuzaki M
    Am J Physiol; 1998 Jan; 274(1):H1-7. PubMed ID: 9458845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inotropic and calcium kinetic effects of calcium channel agonist and antagonist in isolated cardiac myocytes from cardiomyopathic hamsters.
    Sen LY; O'Neill M; Marsh JD; Smith TW
    Circ Res; 1990 Sep; 67(3):599-608. PubMed ID: 1697792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of ventricular M2 muscarinic receptors in cardiomyopathic hamster (CHF 147) at the necrotic stage of the myopathy.
    Wilkinson M; Horackova M; Giles A
    Pflugers Arch; 1994 Apr; 426(6):516-23. PubMed ID: 8052521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic dynamic exercise improves a functional abnormality of the G stimulatory protein in cardiomyopathic BIO 53.58 Syrian hamsters.
    Tomita T; Murakami T; Iwase T; Nagai K; Fujita J; Sasayama S
    Circulation; 1994 Feb; 89(2):836-45. PubMed ID: 8313573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced alpha 1-adrenergic responsiveness in cardiomyopathic hamster cardiac myocytes. Relation to the expression of pertussis toxin-sensitive G protein and alpha 1-adrenergic receptors.
    Sen L; Liang BT; Colucci WS; Smith TW
    Circ Res; 1990 Nov; 67(5):1182-92. PubMed ID: 2171803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium antagonist receptors in cardiomyopathic hamster: selective increases in heart, muscle, brain.
    Wagner JA; Reynolds IJ; Weisman HF; Dudeck P; Weisfeldt ML; Snyder SH
    Science; 1986 Apr; 232(4749):515-8. PubMed ID: 3008330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased [3H]nitrendipine binding sites in rat heart during adult maturation and aging.
    Navaratnam S; Khatter JC
    Biochem Pharmacol; 1991 Feb; 41(4):593-600. PubMed ID: 1847636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium antagonist binding sites in failing and nonfailing human ventricular myocardium.
    Rasmussen RP; Minobe W; Bristow MR
    Biochem Pharmacol; 1990 Feb; 39(4):691-6. PubMed ID: 2154992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac carnitine deficiency and altered carnitine transport in cardiomyopathic hamsters.
    York CM; Cantrell CR; Borum PR
    Arch Biochem Biophys; 1983 Mar; 221(2):526-33. PubMed ID: 6838206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ryanodine and dihydropyridine binding patterns and ryanodine receptor mRNA levels in myopathic hamster heart.
    Lachnit WG; Phillips M; Gayman KJ; Pessah IN
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H1205-13. PubMed ID: 8092287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal beta-adrenergic receptor [(3H] CGP-12177) binding in myocardial slices of cardiomyopathic hamsters.
    Watson-Wright WM; Johnstone DE; Armour JA; Wilkinson M
    Can J Cardiol; 1989 Apr; 5(3):175-80. PubMed ID: 2541876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T-type Ca2+ channels are abnormal in genetically determined cardiomyopathic hamster hearts.
    Sen L; Smith TW
    Circ Res; 1994 Jul; 75(1):149-55. PubMed ID: 8013073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA transcription and translation in the hearts of normal and cardiomyopathic Syrian hamsters.
    McCully JD; Mably JD; Sole MJ; Liew CC
    Biochem Cell Biol; 1991 Jan; 69(1):88-92. PubMed ID: 1710470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of alpha1A- and alpha1B-adrenergic receptor mRNAs in the heart of cardiomyopathic hamsters.
    Beaulieu M; Brakier-Gingras L; Bouvier M
    J Mol Cell Cardiol; 1997 Jan; 29(1):111-9. PubMed ID: 9040026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.