These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 28557415)
1. Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O Xu S; Luo G; Jacobs R; Fang S; Mahanthappa MK; Hamers RJ; Morgan D ACS Appl Mater Interfaces; 2017 Jun; 9(24):20545-20553. PubMed ID: 28557415 [TBL] [Abstract][Full Text] [Related]
2. Degradation of Ethylene Carbonate Electrolytes of Lithium Ion Batteries via Ring Opening Activated by LiCoO Tebbe JL; Fuerst TF; Musgrave CB ACS Appl Mater Interfaces; 2016 Oct; 8(40):26664-26674. PubMed ID: 27610630 [TBL] [Abstract][Full Text] [Related]
3. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries. Rinkel BLD; Vivek JP; Garcia-Araez N; Grey CP Energy Environ Sci; 2022 Aug; 15(8):3416-3438. PubMed ID: 36091097 [TBL] [Abstract][Full Text] [Related]
4. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
5. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries. Dose WM; Temprano I; Allen JP; Björklund E; O'Keefe CA; Li W; Mehdi BL; Weatherup RS; De Volder MFL; Grey CP ACS Appl Mater Interfaces; 2022 Mar; 14(11):13206-13222. PubMed ID: 35258927 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry. Liu YM; G Nicolau B; Esbenshade JL; Gewirth AA Anal Chem; 2016 Jul; 88(14):7171-7. PubMed ID: 27346184 [TBL] [Abstract][Full Text] [Related]
7. Ethylene Carbonate-Based Electrolyte Decomposition and Solid-Electrolyte Interphase Formation on Ca Metal Anodes. Young J; Smeu M J Phys Chem Lett; 2018 Jun; 9(12):3295-3300. PubMed ID: 29856630 [TBL] [Abstract][Full Text] [Related]
8. Reduction mechanisms of additives on Si anodes of Li-ion batteries. Martínez de la Hoz JM; Balbuena PB Phys Chem Chem Phys; 2014 Aug; 16(32):17091-8. PubMed ID: 25005133 [TBL] [Abstract][Full Text] [Related]
9. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. Li Y; Leung K; Qi Y Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438 [TBL] [Abstract][Full Text] [Related]
10. Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes. Kamphaus EP; Angarita-Gomez S; Qin X; Shao M; Engelhard M; Mueller KT; Murugesan V; Balbuena PB ACS Appl Mater Interfaces; 2019 Aug; 11(34):31467-31476. PubMed ID: 31368685 [TBL] [Abstract][Full Text] [Related]
11. Not All Fluorination Is the Same: Unique Effects of Fluorine Functionalization of Ethylene Carbonate for Tuning Solid-Electrolyte Interphase in Li Metal Batteries. Zhang Y; Viswanathan V Langmuir; 2020 Oct; 36(39):11450-11466. PubMed ID: 32914986 [TBL] [Abstract][Full Text] [Related]
12. First-principles study on thermodynamic stability of the hybrid interfacial structure of LiMn Choi D; Kang J; Park J; Han B Phys Chem Chem Phys; 2018 May; 20(17):11592-11597. PubMed ID: 29588999 [TBL] [Abstract][Full Text] [Related]
13. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study. Okuno Y; Ushirogata K; Sodeyama K; Tateyama Y Phys Chem Chem Phys; 2016 Mar; 18(12):8643-53. PubMed ID: 26948716 [TBL] [Abstract][Full Text] [Related]
14. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
15. Prelithiation Activates Li(Ni0.5Mn0.3Co0.2)O2 for High Capacity and Excellent Cycling Stability. Wu Z; Ji S; Zheng J; Hu Z; Xiao S; Wei Y; Zhuo Z; Lin Y; Yang W; Xu K; Amine K; Pan F Nano Lett; 2015 Aug; 15(8):5590-6. PubMed ID: 26182195 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells. He M; Su CC; Peebles C; Feng Z; Connell JG; Liao C; Wang Y; Shkrob IA; Zhang Z ACS Appl Mater Interfaces; 2016 May; 8(18):11450-8. PubMed ID: 27090502 [TBL] [Abstract][Full Text] [Related]
17. Solvent Degradation and Polymerization in the Li-Metal Battery: Organic-Phase Formation in Solid-Electrolyte Interphases. Kuai D; Balbuena PB ACS Appl Mater Interfaces; 2022 Jan; 14(2):2817-2824. PubMed ID: 34994191 [TBL] [Abstract][Full Text] [Related]
18. Electrolyte decomposition on Li-metal surfaces from first-principles theory. Ebadi M; Brandell D; Araujo CM J Chem Phys; 2016 Nov; 145(20):204701. PubMed ID: 27908145 [TBL] [Abstract][Full Text] [Related]
20. Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries. Intan NN; Pfaendtner J ACS Appl Mater Interfaces; 2021 Feb; 13(7):8169-8180. PubMed ID: 33587593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]