These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28557432)

  • 1. Self-Assembled TEMPO Cellulose Nanofibers: Graphene Oxide-Based Biohybrids for Water Purification.
    Zhu C; Liu P; Mathew AP
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):21048-21058. PubMed ID: 28557432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose Nanofiber-Graphene Oxide Biohybrids: Disclosing the Self-Assembly and Copper-Ion Adsorption Using Advanced Microscopy and ReaxFF Simulations.
    Zhu C; Monti S; Mathew AP
    ACS Nano; 2018 Jul; 12(7):7028-7038. PubMed ID: 29889498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu(ii) onto TEMPO-oxidized cellulose nanofibers.
    Zhu C; Soldatov A; Mathew AP
    Nanoscale; 2017 Jun; 9(22):7419-7428. PubMed ID: 28530277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.
    Liu P; Oksman K; Mathew AP
    J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms.
    Li M; Messele SA; Boluk Y; Gamal El-Din M
    Carbohydr Polym; 2019 Oct; 221():231-241. PubMed ID: 31227163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of nanocellulose interaction with water pollutants using nanocellulose colloidal probes and molecular dynamic simulations.
    Zhu C; Monti S; Mathew AP
    Carbohydr Polym; 2020 Feb; 229():115510. PubMed ID: 31826499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification.
    Zhang X; Elsayed I; Navarathna C; Schueneman GT; Hassan EB
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46714-46725. PubMed ID: 31741369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films.
    Shah KJ; Imae T
    Biomacromolecules; 2016 May; 17(5):1653-61. PubMed ID: 27035217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of ultrathin hybrid membranes with improved retention efficiency of molecular dyes.
    Liu P; Milletto C; Monti S; Zhu C; Mathew AP
    RSC Adv; 2019 Sep; 9(49):28657-28669. PubMed ID: 35529612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice Husk-Derived Cellulose Nanofibers: A Potential Sensor for Water-Soluble Gases.
    Shahi N; Lee E; Min B; Kim DJ
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and Mechanical Characterisation of TEMPO-Oxidised Cellulose Nanofibrils/β-Cyclodextrin Films and Cryogels.
    Michel B; Bras J; Dufresne A; Heggset EB; Syverud K
    Molecules; 2020 May; 25(10):. PubMed ID: 32443918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of chloroform from groundwater using activated percarbonate by cellulose nanofiber-supported Fe/Cu nanocomposites.
    Che M; Xiao J; Shan C; Chen S; Huang R; Zhou Y; Cui M; Qi W; Su R
    Water Res; 2023 Sep; 243():120420. PubMed ID: 37523925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically robust high flux graphene oxide - nanocellulose membranes for dye removal from water.
    Liu P; Zhu C; Mathew AP
    J Hazard Mater; 2019 Jun; 371():484-493. PubMed ID: 30875575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of nanocellulose light porous material adsorbed with tannic acid and its application in fresh-keeping pad.
    Dai H; Lv T; Liu S; Luo Y; Wang Y; Wang H; Ma L; Wu J; Zhang Y
    Food Chem; 2024 Jun; 444():138676. PubMed ID: 38335683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation.
    Fang Q; Zhou X; Deng W; Zheng Z; Liu Z
    Sci Rep; 2016 Sep; 6():33185. PubMed ID: 27615451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous PVdF/GO Nanofibrous Membranes for Selective Separation and Recycling of Charged Organic Dyes from Water.
    Ghaffar A; Zhang L; Zhu X; Chen B
    Environ Sci Technol; 2018 Apr; 52(7):4265-4274. PubMed ID: 29490141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Biocompatible Hydrogels from Bicomponent Natural Nanofibers for Anticancer Drug Delivery.
    Xu J; Liu S; Chen G; Chen T; Song T; Wu J; Shi C; He M; Tian J
    J Agric Food Chem; 2018 Jan; 66(4):935-942. PubMed ID: 29283261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of Cu(2+), Cd(2+) and Ni(2+) from aqueous single metal solutions on graphene oxide membranes.
    Tan P; Sun J; Hu Y; Fang Z; Bi Q; Chen Y; Cheng J
    J Hazard Mater; 2015 Oct; 297():251-60. PubMed ID: 25978188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEMPO-Oxidized Cellulose Cross-Linked with Branched Polyethyleneimine: Nanostructured Adsorbent Sponges for Water Remediation.
    Melone L; Rossi B; Pastori N; Panzeri W; Mele A; Punta C
    Chempluschem; 2015 Sep; 80(9):1408-1415. PubMed ID: 31973360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver Nanoparticles Supported onto TEMPO-Oxidized Cellulose Nanofibers for Promoting Cd
    Riva L; Dotti A; Iucci G; Venditti I; Meneghini C; Corsi I; Khalakhan I; Nicastro G; Punta C; Battocchio C
    ACS Appl Nano Mater; 2024 Jan; 7(2):2401-2413. PubMed ID: 38298253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.