These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Experiments in the Wild: Introducing the Within-Person Encouragement Design. Schmiedek F; Neubauer AB Multivariate Behav Res; 2020; 55(2):256-276. PubMed ID: 31264902 [TBL] [Abstract][Full Text] [Related]
43. Strategies for imputing missing covariates in accelerated failure time models. Qi L; Wang YF; Chen R; Siddique J; Robbins J; He Y Stat Med; 2018 Oct; 37(24):3417-3436. PubMed ID: 29943474 [TBL] [Abstract][Full Text] [Related]
44. A Comparison of Imputation Strategies for Ordinal Missing Data on Likert Scale Variables. Wu W; Jia F; Enders C Multivariate Behav Res; 2015; 50(5):484-503. PubMed ID: 26610248 [TBL] [Abstract][Full Text] [Related]
45. Dealing with missing information on covariates for excess mortality hazard regression models - Making the imputation model compatible with the substantive model. Antunes L; Mendonça D; Bento MJ; Njagi EN; Belot A; Rachet B Stat Methods Med Res; 2021 Oct; 30(10):2256-2268. PubMed ID: 34473604 [TBL] [Abstract][Full Text] [Related]
46. Multiple imputation of missing covariate values in multilevel models with random slopes: a cautionary note. Grund S; Lüdtke O; Robitzsch A Behav Res Methods; 2016 Jun; 48(2):640-9. PubMed ID: 25939979 [TBL] [Abstract][Full Text] [Related]
47. A multilevel approach to network meta-analysis within a frequentist framework. Greco T; Edefonti V; Biondi-Zoccai G; Decarli A; Gasparini M; Zangrillo A; Landoni G Contemp Clin Trials; 2015 May; 42():51-9. PubMed ID: 25804722 [TBL] [Abstract][Full Text] [Related]
48. Evaluating FIML and multiple imputation in joint ordinal-continuous measurements models with missing data. Lim AJ; Cheung MW Behav Res Methods; 2022 Jun; 54(3):1063-1077. PubMed ID: 34545537 [TBL] [Abstract][Full Text] [Related]
49. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
50. Multiple imputation of missing data in large studies with many variables: A fully conditional specification approach using partial least squares. Grund S; Lüdtke O; Robitzsch A Psychol Methods; 2024 Sep; ():. PubMed ID: 39347773 [TBL] [Abstract][Full Text] [Related]
51. Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data. Welch CA; Petersen I; Bartlett JW; White IR; Marston L; Morris RW; Nazareth I; Walters K; Carpenter J Stat Med; 2014 Sep; 33(21):3725-37. PubMed ID: 24782349 [TBL] [Abstract][Full Text] [Related]
52. Graphical and numerical diagnostic tools to assess multiple imputation models by posterior predictive checking. Cai M; van Buuren S; Vink G Heliyon; 2023 Jun; 9(6):e17077. PubMed ID: 37360073 [TBL] [Abstract][Full Text] [Related]
53. Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach. Erler NS; Rizopoulos D; Rosmalen Jv; Jaddoe VW; Franco OH; Lesaffre EM Stat Med; 2016 Jul; 35(17):2955-74. PubMed ID: 27042954 [TBL] [Abstract][Full Text] [Related]