These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28557466)

  • 41. Assessing Omitted Confounder Bias in Multilevel Mediation Models.
    Tofighi D; Kelley K
    Multivariate Behav Res; 2016; 51(1):86-105. PubMed ID: 26881959
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experiments in the Wild: Introducing the Within-Person Encouragement Design.
    Schmiedek F; Neubauer AB
    Multivariate Behav Res; 2020; 55(2):256-276. PubMed ID: 31264902
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Strategies for imputing missing covariates in accelerated failure time models.
    Qi L; Wang YF; Chen R; Siddique J; Robbins J; He Y
    Stat Med; 2018 Oct; 37(24):3417-3436. PubMed ID: 29943474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Comparison of Imputation Strategies for Ordinal Missing Data on Likert Scale Variables.
    Wu W; Jia F; Enders C
    Multivariate Behav Res; 2015; 50(5):484-503. PubMed ID: 26610248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dealing with missing information on covariates for excess mortality hazard regression models - Making the imputation model compatible with the substantive model.
    Antunes L; Mendonça D; Bento MJ; Njagi EN; Belot A; Rachet B
    Stat Methods Med Res; 2021 Oct; 30(10):2256-2268. PubMed ID: 34473604
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple imputation of missing covariate values in multilevel models with random slopes: a cautionary note.
    Grund S; Lüdtke O; Robitzsch A
    Behav Res Methods; 2016 Jun; 48(2):640-9. PubMed ID: 25939979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A multilevel approach to network meta-analysis within a frequentist framework.
    Greco T; Edefonti V; Biondi-Zoccai G; Decarli A; Gasparini M; Zangrillo A; Landoni G
    Contemp Clin Trials; 2015 May; 42():51-9. PubMed ID: 25804722
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluating FIML and multiple imputation in joint ordinal-continuous measurements models with missing data.
    Lim AJ; Cheung MW
    Behav Res Methods; 2022 Jun; 54(3):1063-1077. PubMed ID: 34545537
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple imputation of missing data in large studies with many variables: A fully conditional specification approach using partial least squares.
    Grund S; Lüdtke O; Robitzsch A
    Psychol Methods; 2024 Sep; ():. PubMed ID: 39347773
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data.
    Welch CA; Petersen I; Bartlett JW; White IR; Marston L; Morris RW; Nazareth I; Walters K; Carpenter J
    Stat Med; 2014 Sep; 33(21):3725-37. PubMed ID: 24782349
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphical and numerical diagnostic tools to assess multiple imputation models by posterior predictive checking.
    Cai M; van Buuren S; Vink G
    Heliyon; 2023 Jun; 9(6):e17077. PubMed ID: 37360073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach.
    Erler NS; Rizopoulos D; Rosmalen Jv; Jaddoe VW; Franco OH; Lesaffre EM
    Stat Med; 2016 Jul; 35(17):2955-74. PubMed ID: 27042954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rounding strategies for multiply imputed binary data.
    Demirtas H
    Biom J; 2009 Aug; 51(4):677-88. PubMed ID: 19650057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Substantive model compatible multilevel multiple imputation: A joint modeling approach.
    Quartagno M; Carpenter JR
    Stat Med; 2022 Nov; 41(25):5000-5015. PubMed ID: 35959539
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Examining solutions to missing data in longitudinal nursing research.
    Roberts MB; Sullivan MC; Winchester SB
    J Spec Pediatr Nurs; 2017 Apr; 22(2):. PubMed ID: 28425202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bayesian dynamic mediation analysis.
    Huang J; Yuan Y
    Psychol Methods; 2017 Dec; 22(4):667-686. PubMed ID: 27123750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Joint Imputation of General Data.
    Robbins MW
    J Surv Stat Methodol; 2024 Feb; 12(1):183-210. PubMed ID: 38282960
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Imputation strategies for missing continuous outcomes in cluster randomized trials.
    Taljaard M; Donner A; Klar N
    Biom J; 2008 Jun; 50(3):329-45. PubMed ID: 18537126
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multilevel modeling: current and future applications in personality research.
    West SG; Ryu E; Kwok OM; Cham H
    J Pers; 2011 Feb; 79(1):2-50. PubMed ID: 21223263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.