These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 28557801)
1. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation. Monnin P; Verdun FR; Bosmans H; Pérez SR; Marshall NW Phys Med Biol; 2017 Jun; 62(14):5691-5722. PubMed ID: 28557801 [TBL] [Abstract][Full Text] [Related]
2. Effective detective quantum efficiency for two mammography systems: measurement and comparison against established metrics. Salvagnini E; Bosmans H; Struelens L; Marshall NW Med Phys; 2013 Oct; 40(10):101916. PubMed ID: 24089918 [TBL] [Abstract][Full Text] [Related]
3. A comparison of digital radiography systems in terms of effective detective quantum efficiency. Bertolini M; Nitrosi A; Rivetti S; Lanconelli N; Pattacini P; Ginocchi V; Iori M Med Phys; 2012 May; 39(5):2617-27. PubMed ID: 22559632 [TBL] [Abstract][Full Text] [Related]
4. Quantification of scattered radiation in projection mammography: four practical methods compared. Salvagnini E; Bosmans H; Struelens L; Marshall NW Med Phys; 2012 Jun; 39(6):3167-80. PubMed ID: 22755701 [TBL] [Abstract][Full Text] [Related]
5. Effective DQE (eDQE) and speed of digital radiographic systems: an experimental methodology. Samei E; Ranger NT; MacKenzie A; Honey ID; Dobbins JT; Ravin CE Med Phys; 2009 Aug; 36(8):3806-17. PubMed ID: 19746814 [TBL] [Abstract][Full Text] [Related]
6. Generalizing the MTF and DQE to include x-ray scatter and focal spot unsharpness: application to a new microangiographic system. Kyprianou IS; Rudin S; Bednarek DR; Hoffmann KR Med Phys; 2005 Feb; 32(2):613-26. PubMed ID: 15789608 [TBL] [Abstract][Full Text] [Related]
7. An examination of automatic exposure control regimes for two digital radiography systems. Marshall NW Phys Med Biol; 2009 Aug; 54(15):4645-70. PubMed ID: 19590115 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device. Samant SS; Gopal A Med Phys; 2006 Sep; 33(9):3557-67. PubMed ID: 17022252 [TBL] [Abstract][Full Text] [Related]
9. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner. Patel T; Peppard H; Williams MB Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions. Sisniega A; Zbijewski W; Badal A; Kyprianou IS; Stayman JW; Vaquero JJ; Siewerdsen JH Med Phys; 2013 May; 40(5):051915. PubMed ID: 23635285 [TBL] [Abstract][Full Text] [Related]
11. X-ray scatter in megavoltage transmission radiography: physical characteristics and influence on image quality. Jaffray DA; Battista JJ; Fenster A; Munro P Med Phys; 1994 Jan; 21(1):45-60. PubMed ID: 8164588 [TBL] [Abstract][Full Text] [Related]
12. MTF and DQE enhancement using an apodized-aperture x-ray detector design. Nano TF; Escartin T; Ismailova E; Karim KS; Lindström J; Kim HK; Cunningham IA Med Phys; 2017 Sep; 44(9):4525-4535. PubMed ID: 28636792 [TBL] [Abstract][Full Text] [Related]
13. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions. Yun S; Tanguay J; Kim HK; Cunningham IA Med Phys; 2013 Apr; 40(4):041916. PubMed ID: 23556910 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo analysis of beam blocking grid design parameters: Scatter estimation and the importance of electron backscatter. Bootsma GJ; Ren L; Zhang H; Jin JY; Jaffray DA Med Phys; 2018 Mar; 45(3):1059-1070. PubMed ID: 29360154 [TBL] [Abstract][Full Text] [Related]
15. Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system. Shen SZ; Bloomquist AK; Mawdsley GE; Yaffe MJ; Elbakri I Med Phys; 2006 Apr; 33(4):1108-15. PubMed ID: 16696488 [TBL] [Abstract][Full Text] [Related]
16. Effective DQE (eDQE) for monoscopic and stereoscopic chest radiography imaging systems with the incorporation of anatomical noise. Boyce SJ; Choudhury KR; Samei E Med Phys; 2013 Sep; 40(9):091916. PubMed ID: 24007167 [TBL] [Abstract][Full Text] [Related]
17. Optimization of phosphor-based detector design for oblique x-ray incidence in digital breast tomosynthesis. Acciavatti RJ; Maidment AD Med Phys; 2011 Nov; 38(11):6188. PubMed ID: 22047384 [TBL] [Abstract][Full Text] [Related]
18. Characterization of scatter in digital mammography from physical measurements. Leon SM; Brateman LF; Wagner LK Med Phys; 2014 Jun; 41(6):061901. PubMed ID: 24877812 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive model for quantum noise characterization in digital mammography. Monnin P; Bosmans H; Verdun FR; Marshall NW Phys Med Biol; 2016 Mar; 61(5):2083-108. PubMed ID: 26895467 [TBL] [Abstract][Full Text] [Related]
20. The effect of scatter and glare on image quality in contrast-enhanced breast imaging using an a-Si/CsI(TI) full-field flat panel detector. Carton AK; Acciavatti R; Kuo J; Maidment AD Med Phys; 2009 Mar; 36(3):920-8. PubMed ID: 19378752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]