These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 2855803)
1. The structure of the macrophage actin skeleton. Yin HL; Hartwig JH J Cell Sci Suppl; 1988; 9():169-84. PubMed ID: 2855803 [TBL] [Abstract][Full Text] [Related]
2. The organization and regulation of the macrophage actin skeleton. Hartwig JH; Yin HL Cell Motil Cytoskeleton; 1988; 10(1-2):117-25. PubMed ID: 3052862 [TBL] [Abstract][Full Text] [Related]
3. Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Janmey PA; Stossel TP Nature; 1987 Jan 22-28; 325(6102):362-4. PubMed ID: 3027569 [TBL] [Abstract][Full Text] [Related]
4. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Janmey PA; Chaponnier C; Lind SE; Zaner KS; Stossel TP; Yin HL Biochemistry; 1985 Jul; 24(14):3714-23. PubMed ID: 2994715 [TBL] [Abstract][Full Text] [Related]
5. Actin filament architecture and movements in macrophage cytoplasm. Hartwig JH Ciba Found Symp; 1986; 118():42-53. PubMed ID: 3525038 [TBL] [Abstract][Full Text] [Related]
6. Calcium control of macrophage cytoplasmic gelation: evidence for the involvement of the 70,000 Mr actin-bundling protein. Pacaud M; Harricane MC J Cell Sci; 1987 Aug; 88 ( Pt 1)():81-94. PubMed ID: 2832425 [TBL] [Abstract][Full Text] [Related]
8. Functional comparison of villin and gelsolin. Effects of Ca2+, KCl, and polyphosphoinositides. Janmey PA; Matsudaira PT J Biol Chem; 1988 Nov; 263(32):16738-43. PubMed ID: 2846546 [TBL] [Abstract][Full Text] [Related]
9. Kinetic analysis of F-actin depolymerization in the presence of platelet gelsolin and gelsolin-actin complexes. Bryan J; Coluccio LM J Cell Biol; 1985 Oct; 101(4):1236-44. PubMed ID: 2995403 [TBL] [Abstract][Full Text] [Related]
10. Identification of critical functional and regulatory domains in gelsolin. Kwiatkowski DJ; Janmey PA; Yin HL J Cell Biol; 1989 May; 108(5):1717-26. PubMed ID: 2541138 [TBL] [Abstract][Full Text] [Related]
11. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. Janmey PA; Iida K; Yin HL; Stossel TP J Biol Chem; 1987 Sep; 262(25):12228-36. PubMed ID: 3040735 [TBL] [Abstract][Full Text] [Related]
12. Direct observation of actin filament severing by gelsolin and binding by gCap39 and CapZ. Bearer EL J Cell Biol; 1991 Dec; 115(6):1629-38. PubMed ID: 1661732 [TBL] [Abstract][Full Text] [Related]
14. Identification of a polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments. Yin HL; Iida K; Janmey PA J Cell Biol; 1988 Mar; 106(3):805-12. PubMed ID: 2831234 [TBL] [Abstract][Full Text] [Related]
15. Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization. Yin HL; Hartwig JH; Maruyama K; Stossel TP J Biol Chem; 1981 Sep; 256(18):9693-7. PubMed ID: 6270098 [TBL] [Abstract][Full Text] [Related]
16. Acumentin, a protein in macrophages which caps the "pointed" end of action filaments. Southwick FS; Hartwig JH Nature; 1982 May; 297(5864):303-7. PubMed ID: 6281657 [TBL] [Abstract][Full Text] [Related]
18. Role of gelsolin interaction with actin in regulation and creation of actin nuclei in chemotactic peptide activated polymorphonuclear neutrophils. Deaton JD; Guerrero T; Howard TH Mol Biol Cell; 1992 Dec; 3(12):1427-35. PubMed ID: 1337290 [TBL] [Abstract][Full Text] [Related]
19. Chimeric and truncated gCap39 elucidate the requirements for actin filament severing and end capping by the gelsolin family of proteins. Yu FX; Zhou DM; Yin HL J Biol Chem; 1991 Oct; 266(29):19269-75. PubMed ID: 1655780 [TBL] [Abstract][Full Text] [Related]