BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28558045)

  • 1. A technique system for the measurement, reconstruction and character extraction of rice plant architecture.
    Li X; Wang X; Wei H; Zhu X; Peng Y; Li M; Li T; Huang H
    PLoS One; 2017; 12(5):e0177205. PubMed ID: 28558045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modelling.
    Watanabe T; Hanan JS; Room PM; Hasegawa T; Nakagawa H; Takahashi W
    Ann Bot; 2005 Jun; 95(7):1131-43. PubMed ID: 15820987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional canopy photosynthesis model in rice with a complete description of the canopy architecture, leaf physiology, and mechanical properties.
    Chang TG; Zhao H; Wang N; Song QF; Xiao Y; Qu M; Zhu XG
    J Exp Bot; 2019 Apr; 70(9):2479-2490. PubMed ID: 30801123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological acclimation to agronomic manipulation in leaf dispersion and orientation to promote "Ideotype" breeding: Evidence from 3D visual modeling of "super" rice (Oryza sativa L.).
    Wang D; Fahad S; Saud S; Kamran M; Khan A; Khan MN; Hammad HM; Nasim W
    Plant Physiol Biochem; 2019 Feb; 135():499-510. PubMed ID: 30459081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential manipulation of leaf angle throughout the canopy: current status and prospects.
    Mantilla-Perez MB; Salas Fernandez MG
    J Exp Bot; 2017 Dec; 68(21-22):5699-5717. PubMed ID: 29126242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research.
    Fang S; Yan X; Liao H
    Plant J; 2009 Dec; 60(6):1096-108. PubMed ID: 19709387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic algorithm based approach to optimize phenotypical traits of virtual rice.
    Ding W; Xu L; Wei Y; Wu F; Zhu D; Zhang Y; Max N
    J Theor Biol; 2016 Aug; 403():59-67. PubMed ID: 27179460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic variation and association mapping for 12 agronomic traits in indica rice.
    Lu Q; Zhang M; Niu X; Wang S; Xu Q; Feng Y; Wang C; Deng H; Yuan X; Yu H; Wang Y; Wei X
    BMC Genomics; 2015 Dec; 16():1067. PubMed ID: 26673149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.
    Meng F; Cao R; Yang D; Niklas KJ; Sun S
    Tree Physiol; 2013 Jul; 33(7):753-62. PubMed ID: 23933830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Plant and Canopy Architectural Traits Using the Digital Plant Phenotyping Platform.
    Liu S; Martre P; Buis S; Abichou M; Andrieu B; Baret F
    Plant Physiol; 2019 Nov; 181(3):881-890. PubMed ID: 31420444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated recovery of three-dimensional models of plant shoots from multiple color images.
    Pound MP; French AP; Murchie EH; Pridmore TP
    Plant Physiol; 2014 Dec; 166(4):1688-98. PubMed ID: 25332504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RSAtrace3D: robust vectorization software for measuring monocot root system architecture.
    Teramoto S; Tanabata T; Uga Y
    BMC Plant Biol; 2021 Aug; 21(1):398. PubMed ID: 34433428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Completing the picture of field-grown cereal crops: a new method for detailed leaf surface models in wheat.
    Theiß M; Steier A; Rascher U; Müller-Linow M
    Plant Methods; 2024 Feb; 20(1):21. PubMed ID: 38310295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography.
    Yu Z; Ustin SL; Zhang Z; Liu H; Zhang X; Meng X; Cui Y; Guan H
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32707649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.
    Müller-Linow M; Pinto-Espinosa F; Scharr H; Rascher U
    Plant Methods; 2015; 11():11. PubMed ID: 25774205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer.
    Yang W; Guo Z; Huang C; Wang K; Jiang N; Feng H; Chen G; Liu Q; Xiong L
    J Exp Bot; 2015 Sep; 66(18):5605-15. PubMed ID: 25796084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves.
    Tross MC; Gaillard M; Zwiener M; Miao C; Grove RJ; Li B; Benes B; Schnable JC
    PeerJ; 2021; 9():e12628. PubMed ID: 35036135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronism of leaf and tiller emergence relative to position and to main stem development stage in a rice cultivar.
    Jaffuel S; Dauzat J
    Ann Bot; 2005 Feb; 95(3):401-12. PubMed ID: 15601682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.
    Lu G; Coneva V; Casaretto JA; Ying S; Mahmood K; Liu F; Nambara E; Bi YM; Rothstein SJ
    Plant J; 2015 Sep; 83(5):913-25. PubMed ID: 26213119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.