These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28558122)

  • 21. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.
    Yu L; Hu H; Wu HB; Lou XW
    Adv Mater; 2017 Apr; 29(15):. PubMed ID: 28092123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Heteroatom-Doped Carbon Nanomaterials as Multifunctional Metal-Free Catalysts for Integrated Energy Devices.
    Paul R; Du F; Dai L; Ding Y; Wang ZL; Wei F; Roy A
    Adv Mater; 2019 Mar; 31(13):e1805598. PubMed ID: 30761622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion.
    Li Z; Gong L
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Porous graphene materials for advanced electrochemical energy storage and conversion devices.
    Han S; Wu D; Li S; Zhang F; Feng X
    Adv Mater; 2014 Feb; 26(6):849-64. PubMed ID: 24347321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of Hollow Nanostructures for Energy Storage, Conversion and Production.
    Wang J; Cui Y; Wang D
    Adv Mater; 2019 Sep; 31(38):e1801993. PubMed ID: 30238544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchically porous materials: synthesis strategies and structure design.
    Yang XY; Chen LH; Li Y; Rooke JC; Sanchez C; Su BL
    Chem Soc Rev; 2017 Jan; 46(2):481-558. PubMed ID: 27906387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage.
    Shinde PA; Jun SC
    ChemSusChem; 2020 Jan; 13(1):11-38. PubMed ID: 31605458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchically porous three-dimensional electrodes of CoMoO₄ and ZnCo₂O₄ and their high anode performance for lithium ion batteries.
    Yu H; Guan C; Rui X; Ouyang B; Yadian B; Huang Y; Zhang H; Hoster HE; Fan HJ; Yan Q
    Nanoscale; 2014 Sep; 6(18):10556-61. PubMed ID: 25117647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage.
    Yun Q; Li L; Hu Z; Lu Q; Chen B; Zhang H
    Adv Mater; 2020 Jan; 32(1):e1903826. PubMed ID: 31566269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and Electrochemical Energy Storage Applications of Micro/Nanostructured Spherical Materials.
    Gong Q; Gao T; Hu T; Zhou G
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31461975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications.
    Kim Y; Park T; Na J; Yi JW; Kim J; Kim M; Bando Y; Yamauchi Y; Lin J
    Nanoscale; 2020 Apr; 12(16):8608-8625. PubMed ID: 32267282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms for self-templating design of micro/nanostructures toward efficient energy storage.
    Hui Z; An J; Zhou J; Huang W; Sun G
    Exploration (Beijing); 2022 Oct; 2(5):20210237. PubMed ID: 37325505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchically structured materials for lithium batteries.
    Xiao J; Zheng J; Li X; Shao Y; Zhang JG
    Nanotechnology; 2013 Oct; 24(42):424004. PubMed ID: 24067410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.
    Achilleos DS; Hatton TA
    J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery.
    Ge X; Li Z; Wang C; Yin L
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26633-42. PubMed ID: 26572922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.
    Li J; Liu K; Gao X; Yao B; Huo K; Cheng Y; Cheng X; Chen D; Wang B; Sun W; Ding D; Liu M; Huang L
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24622-8. PubMed ID: 26477268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion.
    Cao X; Tan C; Zhang X; Zhao W; Zhang H
    Adv Mater; 2016 Aug; 28(29):6167-96. PubMed ID: 27071683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional self-supported metal oxides for advanced energy storage.
    Ellis BL; Knauth P; Djenizian T
    Adv Mater; 2014 Jun; 26(21):3368-97. PubMed ID: 24700719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.
    Yang S; Bachman RE; Feng X; Müllen K
    Acc Chem Res; 2013 Jan; 46(1):116-28. PubMed ID: 23110511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced Functional Carbons and Their Hybrid Nanoarchitectures towards Supercapacitor Applications.
    Young C; Park T; Yi JW; Kim J; Hossain MSA; Kaneti YV; Yamauchi Y
    ChemSusChem; 2018 Oct; 11(20):3546-3558. PubMed ID: 30156750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.