These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28558133)

  • 1. Loops and Cycles at Surfaces: The Unique Properties of Topological Polymer Brushes.
    Benetti EM; Divandari M; Ramakrishna SN; Morgese G; Yan W; Trachsel L
    Chemistry; 2017 Sep; 23(51):12433-12442. PubMed ID: 28558133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Density Variation within Cyclic Polymer Brushes Reveals Topology Effects on Their Nanotribological and Biopassive Properties.
    Divandari M; Trachsel L; Yan W; Rosenboom JG; Spencer ND; Zenobi-Wong M; Morgese G; Ramakrishna SN; Benetti EM
    ACS Macro Lett; 2018 Dec; 7(12):1455-1460. PubMed ID: 35651229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological Polymer Chemistry Enters Surface Science: Linear versus Cyclic Polymer Brushes.
    Morgese G; Trachsel L; Romio M; Divandari M; Ramakrishna SN; Benetti EM
    Angew Chem Int Ed Engl; 2016 Dec; 55(50):15583-15588. PubMed ID: 27775203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-3D-Structured Interfaces by Polymer Brushes.
    Benetti EM
    Macromol Rapid Commun; 2018 Jul; 39(14):e1800189. PubMed ID: 29786905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tapping the potential of polymer brushes through synthesis.
    Li B; Yu B; Ye Q; Zhou F
    Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of polymer topology on biointeractions of polymer brushes: Comparison of cyclic and linear polymers.
    Wei T; Zhou Y; Zhan W; Zhang Z; Zhu X; Yu Q; Chen H
    Colloids Surf B Biointerfaces; 2017 Nov; 159():527-532. PubMed ID: 28846962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixing Poly(ethylene glycol) and Poly(2-alkyl-2-oxazoline)s Enhances Hydration and Viscoelasticity of Polymer Brushes and Determines Their Nanotribological and Antifouling Properties.
    Morgese G; Gombert Y; Ramakrishna SN; Benetti EM
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41839-41848. PubMed ID: 30395432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability.
    Trachsel L; Romio M; Grob B; Zenobi-Wong M; Spencer ND; Ramakrishna SN; Benetti EM
    ACS Nano; 2020 Aug; 14(8):10054-10067. PubMed ID: 32628438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brushes, Graft Copolymers, or Bottlebrushes? The Effect of Polymer Architecture on the Nanotribological Properties of Grafted-from Assemblies.
    Yan W; Ramakrishna SN; Spencer ND; Benetti EM
    Langmuir; 2019 Sep; 35(35):11255-11264. PubMed ID: 31394039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes.
    Zoppe JO; Osterberg M; Venditti RA; Laine J; Rojas OJ
    Biomacromolecules; 2011 Jul; 12(7):2788-96. PubMed ID: 21648448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinert and Lubricious Surfaces by Macromolecular Design.
    Yan W; Ramakrishna SN; Romio M; Benetti EM
    Langmuir; 2019 Oct; 35(42):13521-13535. PubMed ID: 31532689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.
    Yang J; Chen H; Xiao S; Shen M; Chen F; Fan P; Zhong M; Zheng J
    Langmuir; 2015 Aug; 31(33):9125-33. PubMed ID: 26245712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular Polymer Brushes.
    Metze FK; Klok HA
    ACS Polym Au; 2023 Jun; 3(3):228-238. PubMed ID: 37334190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volume Overlap Variation within Hyperbranched Polymer Brushes Resolves Topology Effects against Protein Fouling.
    He Y; Xing S; Jiang P; Zhao Y; Chen L
    Biomacromolecules; 2022 Nov; 23(11):4924-4933. PubMed ID: 36239027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal interactions of inorganic nanoparticles grafted with zwitterionic polymer brushes and gels by surface-mediated seeded polymerization.
    An S; Choi SK; Cho JW; Kim HT; Kim JW
    Macromol Rapid Commun; 2014 Aug; 35(15):1356-61. PubMed ID: 24840728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of End-Grafted Polymer Conformation on Protein Resistance.
    Han Y; Ma J; Hu Y; Jin J; Jiang W
    Langmuir; 2018 Feb; 34(5):2073-2080. PubMed ID: 29328679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioadhesive control of plasma proteins and blood cells from umbilical cord blood onto the interface grafted with zwitterionic polymer brushes.
    Chang Y; Chang Y; Higuchi A; Shih YJ; Li PT; Chen WY; Tsai EM; Hsiue GH
    Langmuir; 2012 Mar; 28(9):4309-17. PubMed ID: 22268580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.
    Zhao C; Li L; Wang Q; Yu Q; Zheng J
    Langmuir; 2011 Apr; 27(8):4906-13. PubMed ID: 21405141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mussel-Inspired Anchoring of Polymer Loops That Provide Superior Surface Lubrication and Antifouling Properties.
    Kang T; Banquy X; Heo J; Lim C; Lynd NA; Lundberg P; Oh DX; Lee HK; Hong YK; Hwang DS; Waite JH; Israelachvili JN; Hawker CJ
    ACS Nano; 2016 Jan; 10(1):930-7. PubMed ID: 26695175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.