BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28558205)

  • 1. Ruthenium-Catalyzed Urea Synthesis by N-H Activation of Amines.
    Krishnakumar V; Chatterjee B; Gunanathan C
    Inorg Chem; 2017 Jun; 56(12):7278-7284. PubMed ID: 28558205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and "green" catalysis.
    Gunanathan C; Milstein D
    Acc Chem Res; 2011 Aug; 44(8):588-602. PubMed ID: 21739968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amide synthesis from alcohols and amines by the extrusion of dihydrogen.
    Nordstrøm LU; Vogt H; Madsen R
    J Am Chem Soc; 2008 Dec; 130(52):17672-3. PubMed ID: 19061316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes.
    Dam JH; Osztrovszky G; Nordstrøm LU; Madsen R
    Chemistry; 2010 Jun; 16(23):6820-7. PubMed ID: 20437429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation.
    Murahashi S; Nakae T; Terai H; Komiya N
    J Am Chem Soc; 2008 Aug; 130(33):11005-12. PubMed ID: 18646852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Ruthenium-Catalyzed N-Formylation of Amines with H₂ and CO₂.
    Zhang L; Han Z; Zhao X; Wang Z; Ding K
    Angew Chem Int Ed Engl; 2015 May; 54(21):6186-9. PubMed ID: 25850597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-ligand cooperation by aromatization-dearomatization as a tool in single bond activation.
    Milstein D
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2037):. PubMed ID: 25666071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general catalytic β-C-H carbonylation of aliphatic amines to β-lactams.
    Willcox D; Chappell BG; Hogg KF; Calleja J; Smalley AP; Gaunt MJ
    Science; 2016 Nov; 354(6314):851-857. PubMed ID: 27856900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium-Catalyzed Oxidative Coupling of Primary Amines with Internal Alkynes through C-H Bond Activation: Scope and Mechanistic Studies.
    Ruiz S; Villuendas P; Ortuño MA; Lledós A; Urriolabeitia EP
    Chemistry; 2015 Jun; 21(23):8626-36. PubMed ID: 25916684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium-mediated oxidative carbonylation reactions for the synthesis of (11) C-radiolabelled ureas.
    Kealey S; Husbands SM; Bennacef I; Gee AD; Passchier J
    J Labelled Comp Radiopharm; 2014 Apr; 57(4):202-8. PubMed ID: 24327390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper catalyzed oxidative coupling of amines with formamides: a new approach for the synthesis of unsymmetrical urea derivatives.
    Kumar GS; Kumar RA; Kumar PS; Reddy NV; Kumar KV; Kantam ML; Prabhakar S; Reddy KR
    Chem Commun (Camb); 2013 Jul; 49(59):6686-8. PubMed ID: 23774908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-N and N-H Bond Metathesis Reactions Mediated by Carbon Dioxide.
    Wang Y; Zhang J; Liu J; Zhang C; Zhang Z; Xu J; Xu S; Wang F; Wang F
    ChemSusChem; 2015 Jun; 8(12):2066-72. PubMed ID: 26043443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.
    Wu XF; Fang X; Wu L; Jackstell R; Neumann H; Beller M
    Acc Chem Res; 2014 Apr; 47(4):1041-53. PubMed ID: 24564478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Ligand Cooperativity in a Methandiide-Derived Iridium Carbene Complex.
    Weismann J; Waterman R; Gessner VH
    Chemistry; 2016 Mar; 22(11):3846-55. PubMed ID: 26748420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)-Ru(II) hydride complex: unusual metal-ligand cooperation.
    Zeng G; Li S
    Inorg Chem; 2011 Nov; 50(21):10572-80. PubMed ID: 21942421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic synthesis of tricyclic quinoline derivatives from the regioselective hydroamination and C-H bond activation reaction of benzocyclic amines and alkynes.
    Yi CS; Yun SY; Guzei IA
    J Am Chem Soc; 2005 Apr; 127(16):5782-3. PubMed ID: 15839664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting metal-ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts.
    Morris RH
    Acc Chem Res; 2015 May; 48(5):1494-502. PubMed ID: 25897779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The "borrowing hydrogen strategy" by supported ruthenium hydroxide catalysts: synthetic scope of symmetrically and unsymmetrically substituted amines.
    Yamaguchi K; He J; Oishi T; Mizuno N
    Chemistry; 2010 Jun; 16(24):7199-207. PubMed ID: 20468035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bis sigma-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release.
    Alcaraz G; Grellier M; Sabo-Etienne S
    Acc Chem Res; 2009 Oct; 42(10):1640-9. PubMed ID: 19586012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.