BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 28558223)

  • 1. Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.
    Yishai O; Goldbach L; Tenenboim H; Lindner SN; Bar-Even A
    ACS Synth Biol; 2017 Sep; 6(9):1722-1731. PubMed ID: 28558223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Assimilation of One-Carbon via a Synthetic Reductive Glycine Pathway in Escherichia coli.
    Yishai O; Bouzon M; Döring V; Bar-Even A
    ACS Synth Biol; 2018 Sep; 7(9):2023-2028. PubMed ID: 29763299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formic acid as a secondary substrate for succinic acid production by metabolically engineered Mannheimia succiniciproducens.
    Ahn JH; Bang J; Kim WJ; Lee SY
    Biotechnol Bioeng; 2017 Dec; 114(12):2837-2847. PubMed ID: 28926680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Methanol and Formate Assimilation Via Modular Engineering and Selection Strategies.
    Claassens NJ; He H; Bar-Even A
    Curr Issues Mol Biol; 2019; 33():237-248. PubMed ID: 31166196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation.
    Turlin J; Dronsella B; De Maria A; Lindner SN; Nikel PI
    Metab Eng; 2022 Nov; 74():191-205. PubMed ID: 36328297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast.
    Gonzalez de la Cruz J; Machens F; Messerschmidt K; Bar-Even A
    ACS Synth Biol; 2019 May; 8(5):911-917. PubMed ID: 31002757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assimilation of formic acid and CO
    Bang J; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9271-E9279. PubMed ID: 30224468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.
    Choi S; Kim HU; Kim TY; Lee SY
    Metab Eng; 2016 Nov; 38():264-273. PubMed ID: 27663752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of E. coli on formate and methanol via the reductive glycine pathway.
    Kim S; Lindner SN; Aslan S; Yishai O; Wenk S; Schann K; Bar-Even A
    Nat Chem Biol; 2020 May; 16(5):538-545. PubMed ID: 32042198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of a Reductive Route of One-Carbon Assimilation in Escherichia coli through Directed Evolution.
    Döring V; Darii E; Yishai O; Bar-Even A; Bouzon M
    ACS Synth Biol; 2018 Sep; 7(9):2029-2036. PubMed ID: 30106273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation.
    Claassens NJ; Satanowski A; Bysani VR; Dronsella B; Orsi E; Rainaldi V; Yilmaz S; Wenk S; Lindner SN
    Adv Biochem Eng Biotechnol; 2022; 180():299-350. PubMed ID: 35364693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate.
    Kirst H; Ferlez BH; Lindner SN; Cotton CAR; Bar-Even A; Kerfeld CA
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35193962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway.
    Bruinsma L; Wenk S; Claassens NJ; Martins Dos Santos VAP
    Metab Eng; 2023 Mar; 76():215-224. PubMed ID: 36804222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in metabolic engineering of microbial formate assimilation.
    Mao W; Yuan Q; Qi H; Wang Z; Ma H; Chen T
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6905-6917. PubMed ID: 32566995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways.
    Bar-Even A
    Biochemistry; 2016 Jul; 55(28):3851-63. PubMed ID: 27348189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Synthetic Alternative to Canonical One-Carbon Metabolism.
    Bouzon M; Perret A; Loreau O; Delmas V; Perchat N; Weissenbach J; Taran F; Marlière P
    ACS Synth Biol; 2017 Aug; 6(8):1520-1533. PubMed ID: 28467058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems metabolic engineering of Corynebacterium glutamicum to assimilate formic acid for biomass accumulation and succinic acid production.
    Li K; Zhang X; Li C; Liang YC; Zhao XQ; Liu CG; Sinskey AJ; Bai FW
    Bioresour Technol; 2024 Jun; 402():130774. PubMed ID: 38701983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli is engineered to grow on CO
    Bang J; Hwang CH; Ahn JH; Lee JA; Lee SY
    Nat Microbiol; 2020 Dec; 5(12):1459-1463. PubMed ID: 32989263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified serine cycle in Escherichia coli coverts methanol and CO
    Yu H; Liao JC
    Nat Commun; 2018 Sep; 9(1):3992. PubMed ID: 30266898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.