BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28558285)

  • 21. Geochemical interactions in the trace element-soil-clay system of treated contaminated soils by Fe-rich clays.
    Kypritidou Z; Argyraki A
    Environ Geochem Health; 2021 Jul; 43(7):2483-2503. PubMed ID: 32095932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal(loid)s inhalation bioaccessibility and oxidative potential of particulate matter from chromated copper arsenate (CCA)-contaminated soils.
    Gosselin M; Zagury GJ
    Chemosphere; 2020 Jan; 238():124557. PubMed ID: 31422311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solid-phase control on lead bioaccessibility in smelter-impacted soils.
    Romero FM; Villalobos M; Aguirre R; Gutiérrez ME
    Arch Environ Contam Toxicol; 2008 Nov; 55(4):566-75. PubMed ID: 18320262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method.
    Xia Q; Peng C; Lamb D; Kader M; Mallavarapu M; Naidu R; Ng JC
    Chemosphere; 2016 Jul; 154():343-349. PubMed ID: 27062001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoavailability of potentially toxic elements from industrially contaminated soils to wild grass.
    Yotova G; Zlateva B; Ganeva S; Simeonov V; Kudłak B; Namieśnik J; Tsakovski S
    Ecotoxicol Environ Saf; 2018 Nov; 164():317-324. PubMed ID: 30125778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China.
    Yutong Z; Qing X; Shenggao L
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24107-24114. PubMed ID: 27640054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential Individual Particle Analysis (DIPA): applications in particulate matter characterization.
    Hunt A; Johnson DL
    J Environ Qual; 2011; 40(3):742-50. PubMed ID: 21546660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils.
    Juhasz AL; Weber J; Smith E
    J Hazard Mater; 2011 Feb; 186(2-3):1870-9. PubMed ID: 21247691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of Cu and Pb in particle size fractions of urban soils from different city zones of Nanjing, China.
    Wang HH; Li LQ; Wu XM; Pan GX
    J Environ Sci (China); 2006; 18(3):482-7. PubMed ID: 17294644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The source of lead determines the relationship between soil properties and lead bioaccessibility.
    Yan K; Dong Z; Wijayawardena MAA; Liu Y; Li Y; Naidu R
    Environ Pollut; 2019 Mar; 246():53-59. PubMed ID: 30529941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic.
    Drahota P; Raus K; Rychlíková E; Rohovec J
    Environ Geochem Health; 2018 Aug; 40(4):1495-1512. PubMed ID: 28620816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lead contamination of the mining and smelting district in Mitrovica, Kosovo.
    Prathumratana L; Kim R; Kim KW
    Environ Geochem Health; 2020 Mar; 42(3):1033-1044. PubMed ID: 30206754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of lead sources on oral bioaccessibility in soil and implications for contaminated land risk management.
    Palmer S; McIlwaine R; Ofterdinger U; Cox SF; McKinley JM; Doherty R; Wragg J; Cave M
    Environ Pollut; 2015 Mar; 198():161-71. PubMed ID: 25603155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioaccessibility estimates by gastric SBRC method to determine relationships to bioavailability of nickel in ultramafic soils.
    Vasiluk L; Sowa J; Sanborn P; Ford F; Dutton MD; Hale B
    Sci Total Environ; 2019 Jul; 673():685-693. PubMed ID: 31003095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland.
    Farmer JG; Broadway A; Cave MR; Wragg J; Fordyce FM; Graham MC; Ngwenya BT; Bewley RJ
    Sci Total Environ; 2011 Nov; 409(23):4958-65. PubMed ID: 21930292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: a review.
    Zia MH; Codling EE; Scheckel KG; Chaney RL
    Environ Pollut; 2011 Oct; 159(10):2320-7. PubMed ID: 21616569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.
    Li Y; Li HG; Liu FC
    Environ Monit Assess; 2017 Jan; 189(1):34. PubMed ID: 28013473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro dermal bioaccessibility of selected metals in contaminated soil and mine tailings and human health risk characterization.
    Chaparro Leal LT; Guney M; Zagury GJ
    Chemosphere; 2018 Apr; 197():42-49. PubMed ID: 29331717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioaccessibility of arsenic, lead, and cadmium in contaminated mining/smelting soils: Assessment, modeling, and application for soil environment criteria derivation.
    Xie K; Xie N; Liao Z; Luo X; Peng W; Yuan Y
    J Hazard Mater; 2023 Feb; 443(Pt B):130321. PubMed ID: 36368062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.