These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 28558343)
1. Interconnectivity imaged in three dimensions: Nano-particulate silica-hydrogel structure revealed using electron tomography. Hamngren Blomqvist C; Gebäck T; Altskär A; Hermansson AM; Gustafsson S; Lorén N; Olsson E Micron; 2017 Sep; 100():91-105. PubMed ID: 28558343 [TBL] [Abstract][Full Text] [Related]
2. Quantitative three-dimensional analysis of poly (lactic-co-glycolic acid) microsphere using hard X-ray nano-tomography revealed correlation between structural parameters and drug burst release. Huang X; Li N; Wang D; Luo Y; Wu Z; Guo Z; Jin Q; Liu Z; Huang Y; Zhang Y; Wu C J Pharm Biomed Anal; 2015 Aug; 112():43-9. PubMed ID: 25951620 [TBL] [Abstract][Full Text] [Related]
3. Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography. Moore MJ; Jabbari E; Ritman EL; Lu L; Currier BL; Windebank AJ; Yaszemski MJ J Biomed Mater Res A; 2004 Nov; 71(2):258-67. PubMed ID: 15376269 [TBL] [Abstract][Full Text] [Related]
4. In-situ assembly of Ca-alginate gels with controlled pore loading/release capability. Sergeeva AS; Gorin DA; Volodkin DV Langmuir; 2015 Oct; 31(39):10813-21. PubMed ID: 26345198 [TBL] [Abstract][Full Text] [Related]
6. Structural changes in nanoparticle-hydrogel composites at very low filler concentrations. Levin M; Sonn-Segev A; Roichman Y J Chem Phys; 2019 Feb; 150(6):064908. PubMed ID: 30770008 [TBL] [Abstract][Full Text] [Related]
7. Macroporous hydrogel scaffolds and their characterization by optical coherence tomography. Chen CW; Betz MW; Fisher JP; Paek A; Chen Y Tissue Eng Part C Methods; 2011 Jan; 17(1):101-12. PubMed ID: 20666607 [TBL] [Abstract][Full Text] [Related]
8. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro. Huang X; Tao Z; Praskavich JC; Goswami A; Al-Sharab JF; Minko T; Polshettiwar V; Asefa T Langmuir; 2014 Sep; 30(36):10886-98. PubMed ID: 25188675 [TBL] [Abstract][Full Text] [Related]
9. Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: a custom pressure plate apparatus and capillary bundle model. Wei Y; Durian DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053013. PubMed ID: 23767626 [TBL] [Abstract][Full Text] [Related]
10. Insights into the intraparticle morphology of dendritic mesoporous silica nanoparticles from electron tomographic reconstructions. Hochstrasser J; Juère E; Kleitz F; Wang W; Kübel C; Tallarek U J Colloid Interface Sci; 2021 Jun; 592():296-309. PubMed ID: 33676192 [TBL] [Abstract][Full Text] [Related]
11. A simple and environment-friendly approach for synthesizing macroporous polymers from aqueous foams. Tan H; Tu S; Zhao Y; Wang H; Du Q J Colloid Interface Sci; 2018 Jan; 509():209-218. PubMed ID: 28910686 [TBL] [Abstract][Full Text] [Related]
12. Size distribution and volume fraction of T(1) phase precipitates from TEM images: Direct measurements and related correction. Dorin T; Donnadieu P; Chaix JM; Lefebvre W; Geuser F; Deschamps A Micron; 2015 Nov; 78():19-27. PubMed ID: 26203532 [TBL] [Abstract][Full Text] [Related]
13. MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system. Kim TW; Kleitz F; Paul B; Ryoo R J Am Chem Soc; 2005 May; 127(20):7601-10. PubMed ID: 15898812 [TBL] [Abstract][Full Text] [Related]
14. Porous devices derived from co-continuous polymer blends as a route for controlled drug release. Salehi P; Sarazin P; Favis BD Biomacromolecules; 2008 Apr; 9(4):1131-8. PubMed ID: 18355029 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Kübel C; Voigt A; Schoenmakers R; Otten M; Su D; Lee TC; Carlsson A; Bradley J Microsc Microanal; 2005 Oct; 11(5):378-400. PubMed ID: 17481320 [TBL] [Abstract][Full Text] [Related]
16. Interpenetrating polymer network hydrogel scaffolds for artificial cornea periphery. Parke-Houben R; Fox CH; Zheng LL; Waters DJ; Cochran JR; Ta CN; Frank CW J Mater Sci Mater Med; 2015 Feb; 26(2):107. PubMed ID: 25665845 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional pore structure of chromatographic adsorbents from electron tomography. Yao Y; Czymmek KJ; Pazhianur R; Lenhoff AM Langmuir; 2006 Dec; 22(26):11148-57. PubMed ID: 17154596 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional pore structure analysis of polycaprolactone nano-microfibrous scaffolds using theoretical and experimental approaches. Bagherzadeh R; Latifi M; Kong L J Biomed Mater Res A; 2014 Mar; 102(3):903-10. PubMed ID: 23554325 [TBL] [Abstract][Full Text] [Related]
19. Electric-field-enhanced transport in polyacrylamide hydrogel nanocomposites. Hill RJ J Colloid Interface Sci; 2007 Dec; 316(2):635-44. PubMed ID: 17915246 [TBL] [Abstract][Full Text] [Related]
20. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Otsuki B; Takemoto M; Fujibayashi S; Neo M; Kokubo T; Nakamura T Biomaterials; 2006 Dec; 27(35):5892-900. PubMed ID: 16945409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]