These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
593 related articles for article (PubMed ID: 28558835)
1. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Chang SR; Nandor MJ; Li L; Kobetic R; Foglyano KM; Schnellenberger JR; Audu ML; Pinault G; Quinn RD; Triolo RJ J Neuroeng Rehabil; 2017 May; 14(1):48. PubMed ID: 28558835 [TBL] [Abstract][Full Text] [Related]
2. A stimulation-driven exoskeleton for walking after paraplegia. Chang SR; Nandor MJ; Lu Li ; Foglyano KM; Schnellenberger JR; Kobetic R; Quinn RD; Triolo RJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6369-6372. PubMed ID: 28269706 [TBL] [Abstract][Full Text] [Related]
3. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia. To CS; Kobetic R; Bulea TC; Audu ML; Schnellenberger JR; Pinault G; Triolo RJ J Rehabil Res Dev; 2014; 51(2):229-44. PubMed ID: 24933721 [TBL] [Abstract][Full Text] [Related]
5. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677 [TBL] [Abstract][Full Text] [Related]
8. A semi-active hybrid neuroprosthesis for restoring lower limb function in paraplegics. Kirsch N; Alibeji N; Fisher L; Gregory C; Sharma N Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2557-60. PubMed ID: 25570512 [TBL] [Abstract][Full Text] [Related]
9. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance. Dunkelberger N; Schearer EM; O'Malley MK Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251 [TBL] [Abstract][Full Text] [Related]
10. Forward stair descent with hybrid neuroprosthesis after paralysis: Single case study demonstrating feasibility. Bulea TC; Kobetic R; Audu ML; Schnellenberger JR; Pinault G; Triolo RJ J Rehabil Res Dev; 2014; 51(7):1077-94. PubMed ID: 25437932 [TBL] [Abstract][Full Text] [Related]
11. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals. Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691 [TBL] [Abstract][Full Text] [Related]
12. Voluntary ambulation using voluntary upper limb muscle activity and Hybrid Assistive Limb® (HAL®) in a patient with complete paraplegia due to chronic spinal cord injury: A case report. Shimizu Y; Kadone H; Kubota S; Suzuki K; Saotome K; Ueno T; Abe T; Marushima A; Watanabe H; Endo A; Tsurumi K; Ishimoto R; Matsushita A; Koda M; Matsumura A; Sankai Y; Hada Y; Yamazaki M J Spinal Cord Med; 2019 Jul; 42(4):460-468. PubMed ID: 29351051 [No Abstract] [Full Text] [Related]
13. FES Coupled With A Powered Exoskeleton For Cooperative Muscle Contribution In Persons With Paraplegia. Murray SA; Farris RJ; Golfarb M; Hartigan C; Kandilakis C; Truex D Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2788-2792. PubMed ID: 30440980 [TBL] [Abstract][Full Text] [Related]
14. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538 [TBL] [Abstract][Full Text] [Related]
15. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016. Schrade SO; Dätwyler K; Stücheli M; Studer K; Türk DA; Meboldt M; Gassert R; Lambercy O J Neuroeng Rehabil; 2018 Mar; 15(1):18. PubMed ID: 29534730 [TBL] [Abstract][Full Text] [Related]
16. Effect of exoskeletal joint constraint and passive resistance on metabolic energy expenditure: Implications for walking in paraplegia. Chang SR; Kobetic R; Triolo RJ PLoS One; 2017; 12(8):e0183125. PubMed ID: 28817701 [TBL] [Abstract][Full Text] [Related]
17. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613 [TBL] [Abstract][Full Text] [Related]
18. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study. Xiang XN; Ding MF; Zong HY; Liu Y; Cheng H; He CQ; He HC Spinal Cord; 2020 Jul; 58(7):787-794. PubMed ID: 32034295 [TBL] [Abstract][Full Text] [Related]
19. An Approach for the Cooperative Control of FES With a Powered Exoskeleton During Level Walking for Persons With Paraplegia. Ha KH; Murray SA; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):455-66. PubMed ID: 25915961 [TBL] [Abstract][Full Text] [Related]
20. Enhancing stance phase propulsion during level walking by combining FES with a powered exoskeleton for persons with paraplegia. Ha KH; Quintero HA; Farris RJ; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():344-7. PubMed ID: 23365900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]