These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28558965)

  • 1. The enzyme: Renalase.
    Moran GR; Hoag MR
    Arch Biochem Biophys; 2017 Oct; 632():66-76. PubMed ID: 28558965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The history of renalase from amine oxidase to a a-NAD(P)H-oxidase/anomerase].
    Severina IS; Fedchenko VI; Veselovsky AV; Medvedev AE
    Biomed Khim; 2015; 61(6):667-79. PubMed ID: 26716738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation.
    Milani M; Ciriello F; Baroni S; Pandini V; Canevari G; Bolognesi M; Aliverti A
    J Mol Biol; 2011 Aug; 411(2):463-73. PubMed ID: 21699903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalytic function of renalase: A decade of phantoms.
    Moran GR
    Biochim Biophys Acta; 2016 Jan; 1864(1):177-86. PubMed ID: 25900362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial Renalase: Structure and Kinetics of an Enzyme with 2- and 6-Dihydro-β-NAD(P) Oxidase Activity from Pseudomonas phaseolicola.
    Hoag MR; Roman J; Beaupre BA; Silvaggi NR; Moran GR
    Biochemistry; 2015 Jun; 54(24):3791-802. PubMed ID: 26016690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human urinary renalase lacks the N-terminal signal peptide crucial for accommodation of its FAD cofactor.
    Fedchenko VI; Buneeva OA; Kopylov AT; Veselovsky AV; Zgoda VG; Medvedev AE
    Int J Biol Macromol; 2015; 78():347-53. PubMed ID: 25910647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renalase does not catalyze the oxidation of catecholamines.
    Beaupre BA; Hoag MR; Moran GR
    Arch Biochem Biophys; 2015 Aug; 579():62-6. PubMed ID: 26049000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic function for human renalase: oxidation of isomeric forms of β-NAD(P)H that are inhibitory to primary metabolism.
    Beaupre BA; Hoag MR; Roman J; Försterling FH; Moran GR
    Biochemistry; 2015 Jan; 54(3):795-806. PubMed ID: 25531177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand binding phenomena that pertain to the metabolic function of renalase.
    Beaupre BA; Roman JV; Hoag MR; Meneely KM; Silvaggi NR; Lamb AL; Moran GR
    Arch Biochem Biophys; 2016 Dec; 612():46-56. PubMed ID: 27769837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renalase is an α-NAD(P)H oxidase/anomerase.
    Beaupre BA; Carmichael BR; Hoag MR; Shah DD; Moran GR
    J Am Chem Soc; 2013 Sep; 135(37):13980-7. PubMed ID: 23964689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems.
    Medvedev AE; Veselovsky AV; Fedchenko VI
    Biochemistry (Mosc); 2010 Aug; 75(8):951-8. PubMed ID: 21073414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyridoxamine-phosphate oxidases and pyridoxamine-phosphate oxidase-related proteins catalyze the oxidation of 6-NAD(P)H to NAD(P).
    Marbaix AY; Chehade G; Noël G; Morsomme P; Vertommen D; Bommer GT; Van Schaftingen E
    Biochem J; 2019 Oct; 476(20):3033-3052. PubMed ID: 31657440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is renalase a novel player in catecholaminergic signaling? The mystery of the catalytic activity of an intriguing new flavoenzyme.
    Baroni S; Milani M; Pandini V; Pavesi G; Horner D; Aliverti A
    Curr Pharm Des; 2013; 19(14):2540-51. PubMed ID: 23116393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based redesign of cofactor binding in putrescine oxidase.
    Kopacz MM; Rovida S; van Duijn E; Fraaije MW; Mattevi A
    Biochemistry; 2011 May; 50(19):4209-17. PubMed ID: 21486042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renalase, a catecholamine-metabolising enzyme?
    Boomsma F; Tipton KF
    J Neural Transm (Vienna); 2007; 114(6):775-6. PubMed ID: 17385068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renalase Secreted by Human Kidney HEK293T Cells Lacks its N-Terminal Peptide: Implications for Putative Mechanisms of Renalase Action.
    Fedchenko V; Kopylov A; Kozlova N; Buneeva O; Kaloshin A; Zgoda V; Medvedev A
    Kidney Blood Press Res; 2016; 41(5):593-603. PubMed ID: 27577995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The FAD binding sites of human monoamine oxidases A and B.
    Edmondson DE; Binda C; Mattevi A
    Neurotoxicology; 2004 Jan; 25(1-2):63-72. PubMed ID: 14697881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and equilibria of the reductive and oxidative half-reactions of human renalase with α-NADPH.
    Beaupre BA; Hoag MR; Carmichael BR; Moran GR
    Biochemistry; 2013 Dec; 52(49):8929-37. PubMed ID: 24266457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the flavoprotein tryptophan 2-monooxygenase, a key enzyme in the formation of galls in plants.
    Gaweska HM; Taylor AB; Hart PJ; Fitzpatrick PF
    Biochemistry; 2013 Apr; 52(15):2620-6. PubMed ID: 23521653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the flavin adenine dinucleotide ribityl side chain.
    Engst S; Vock P; Wang M; Kim JJ; Ghisla S
    Biochemistry; 1999 Jan; 38(1):257-67. PubMed ID: 9890906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.