These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28559104)

  • 21. Pyrolysis of waste tyres: a review.
    Williams PT
    Waste Manag; 2013 Aug; 33(8):1714-28. PubMed ID: 23735607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of peach endocarp and polyethylene residue by the co-pyrolysis process.
    Valadão LS; Dos Santos Duarte C; de Los Santos DG; Filho PJS
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):10702-10716. PubMed ID: 34528192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conversion of hazardous plastic wastes into useful chemical products.
    Siddiqui MN
    J Hazard Mater; 2009 Aug; 167(1-3):728-35. PubMed ID: 19201536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal processing of paper sludge and characterisation of its pyrolysis products.
    Strezov V; Evans TJ
    Waste Manag; 2009 May; 29(5):1644-8. PubMed ID: 19136244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Pt catalyst on the condensable hydrocarbon content generated via food waste pyrolysis.
    Kim S; Lee CG; Kim YT; Kim KH; Lee J
    Chemosphere; 2020 Jun; 248():126043. PubMed ID: 32007768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.
    Solak A; Rutkowski P
    Waste Manag; 2014 Feb; 34(2):504-12. PubMed ID: 24252369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.
    Ateş F; Miskolczi N; Borsodi N
    Bioresour Technol; 2013 Apr; 133():443-54. PubMed ID: 23455219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste.
    Park C; Choi H; Andrew Lin KY; Kwon EE; Lee J
    Energy (Oxf); 2021 Sep; 230():120876. PubMed ID: 33994654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on thermal co-pyrolysis of jatropha deoiled cake and polyolefins.
    Rotliwala YC; Parikh PA
    Waste Manag Res; 2011 Dec; 29(12):1251-61. PubMed ID: 21628346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality.
    Fan L; Chen P; Zhang Y; Liu S; Liu Y; Wang Y; Dai L; Ruan R
    Bioresour Technol; 2017 Feb; 225():199-205. PubMed ID: 27894038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermo-catalytic co-pyrolysis of waste plastic and paper in batch and tubular reactors for in-situ product improvement.
    Fekhar B; Zsinka V; Miskolczi N
    J Environ Manage; 2020 Sep; 269():110741. PubMed ID: 32560985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil.
    Miandad R; Nizami AS; Rehan M; Barakat MA; Khan MI; Mustafa A; Ismail IMI; Murphy JD
    Waste Manag; 2016 Dec; 58():250-259. PubMed ID: 27717700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and characterization of bio-oil from the pyrolysis of waste frying oil.
    Kraiem T; Hassen AB; Belayouni H; Jeguirim M
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9951-9961. PubMed ID: 27665463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrolysis of polyethylene mixed with paper and wood: Interaction effects on tar, char and gas yields.
    Grieco EM; Baldi G
    Waste Manag; 2012 May; 32(5):833-9. PubMed ID: 22230659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.
    Ben Hassen-Trabelsi A; Kraiem T; Naoui S; Belayouni H
    Waste Manag; 2014 Jan; 34(1):210-8. PubMed ID: 24129214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-pyrolysis of different torrefied Chinese herb residues and low-density polyethylene: Kinetic and products distribution.
    Huang S; Qin J; Chen T; Yi C; Zhang S; Zhou Z; Zhou N
    Sci Total Environ; 2022 Jan; 802():149752. PubMed ID: 34454148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Characterization of pyrolysis of waste printed circuit boards by high-resolution pyrolysis gas chromatography-mass spectrometry].
    Zhang Y; Huang H; Xia Z; Chen H
    Se Pu; 2008 Jul; 26(4):519-22. PubMed ID: 18959254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergetic effects during co-pyrolysis of biomass and waste tire: A study on product distribution and reaction kinetics.
    Wang L; Chai M; Liu R; Cai J
    Bioresour Technol; 2018 Nov; 268():363-370. PubMed ID: 30096644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies of the thermal degradation of waste rubber.
    Chen F; Qian J
    Waste Manag; 2003; 23(6):463-7. PubMed ID: 12909087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.