BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28559406)

  • 21. Discovery of an iron-regulated citrate synthase in Staphylococcus aureus.
    Cheung J; Murphy ME; Heinrichs DE
    Chem Biol; 2012 Dec; 19(12):1568-78. PubMed ID: 23261600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elucidating the crucial role of poly N-acetylglucosamine from Staphylococcus aureus in cellular adhesion and pathogenesis.
    Lin MH; Shu JC; Lin LP; Chong KY; Cheng YW; Du JF; Liu ST
    PLoS One; 2015; 10(4):e0124216. PubMed ID: 25876106
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Perry WJ; Spraggins JM; Sheldon JR; Grunenwald CM; Heinrichs DE; Cassat JE; Skaar EP; Caprioli RM
    Proc Natl Acad Sci U S A; 2019 Oct; 116(44):21980-21982. PubMed ID: 31611408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of the Staphylococcus aureus gene cluster coding for staphyloferrin A.
    Cotton JL; Tao J; Balibar CJ
    Biochemistry; 2009 Feb; 48(5):1025-35. PubMed ID: 19138128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tet38 Efflux Pump Affects Staphylococcus aureus Internalization by Epithelial Cells through Interaction with CD36 and Contributes to Bacterial Escape from Acidic and Nonacidic Phagolysosomes.
    Truong-Bolduc QC; Khan NS; Vyas JM; Hooper DC
    Infect Immun; 2017 Feb; 85(2):. PubMed ID: 27956597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus.
    Beasley FC; Cheung J; Heinrichs DE
    BMC Microbiol; 2011 Sep; 11():199. PubMed ID: 21906287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and biological characterization of staphyloferrin B, a compound with siderophore activity from staphylococci.
    Haag H; Fiedler HP; Meiwes J; Drechsel H; Jung G; Zähner H
    FEMS Microbiol Lett; 1994 Jan; 115(2-3):125-30. PubMed ID: 8138126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Basis for Xenosiderophore Utilization by the Human Pathogen Staphylococcus aureus.
    Endicott NP; Lee E; Wencewicz TA
    ACS Infect Dis; 2017 Jul; 3(7):542-553. PubMed ID: 28505405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular accumulation of staphylopine impairs the fitness of Staphylococcus aureus cntE mutant.
    Chen C; Hooper DC
    FEBS Lett; 2019 Jun; 593(11):1213-1222. PubMed ID: 31045247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Metallophore Staphylopine Enables
    Grim KP; San Francisco B; Radin JN; Brazel EB; Kelliher JL; Párraga Solórzano PK; Kim PC; McDevitt CA; Kehl-Fie TE
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the siderophore transporter SirABC in the Staphylococcus aureus resistance to oxidative stress.
    Nobre LS; Saraiva LM
    Curr Microbiol; 2014 Aug; 69(2):164-8. PubMed ID: 24682218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Staphylococcus aureus siderophore receptor HtsA undergoes localized conformational changes to enclose staphyloferrin A in an arginine-rich binding pocket.
    Grigg JC; Cooper JD; Cheung J; Heinrichs DE; Murphy ME
    J Biol Chem; 2010 Apr; 285(15):11162-71. PubMed ID: 20147287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repair of Iron Centers RIC protein contributes to the virulence of Staphylococcus aureus.
    Silva LO; Nobre LS; Mil-Homens D; Fialho A; Saraiva LM
    Virulence; 2018 Jan; 9(1):312-317. PubMed ID: 29020514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Staphylococcus aureus heme and siderophore-iron acquisition pathways.
    Conroy BS; Grigg JC; Kolesnikov M; Morales LD; Murphy MEP
    Biometals; 2019 Jun; 32(3):409-424. PubMed ID: 30911924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and Is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis.
    Horsburgh MJ; Ingham E; Foster SJ
    J Bacteriol; 2001 Jan; 183(2):468-75. PubMed ID: 11133939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis, by heme, hemoglobin, and coculture with Staphylococcus aureus.
    Brozyna JR; Sheldon JR; Heinrichs DE
    Microbiologyopen; 2014 Apr; 3(2):182-95. PubMed ID: 24515974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Siderophore-mediated iron acquisition in the staphylococci.
    Beasley FC; Heinrichs DE
    J Inorg Biochem; 2010 Mar; 104(3):282-8. PubMed ID: 19850350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specificity of Staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus.
    Grigg JC; Cheung J; Heinrichs DE; Murphy ME
    J Biol Chem; 2010 Nov; 285(45):34579-88. PubMed ID: 20810662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by
    Verstraete MM; Morales LD; Kobylarz MJ; Loutet SA; Laakso HA; Pinter TB; Stillman MJ; Heinrichs DE; Murphy MEP
    J Biol Chem; 2019 Jul; 294(30):11622-11636. PubMed ID: 31197035
    [No Abstract]   [Full Text] [Related]  

  • 40. Low-proline environments impair growth, proline transport and in vivo survival of Staphylococcus aureus strain-specific putP mutants.
    Schwan WR; Wetzel KJ; Gomez TS; Stiles MA; Beitlich BD; Grunwald S
    Microbiology (Reading); 2004 Apr; 150(Pt 4):1055-1061. PubMed ID: 15073314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.