BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 28559484)

  • 1. Finding the Needle in the Haystack-the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria.
    Chen J; Vestergaard M; Jensen TG; Shen J; Dufva M; Solem C; Jensen PR
    mBio; 2017 May; 8(3):. PubMed ID: 28559484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods.
    Burgess C; O'connell-Motherway M; Sybesma W; Hugenholtz J; van Sinderen D
    Appl Environ Microbiol; 2004 Oct; 70(10):5769-77. PubMed ID: 15466513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivitamin production in Lactococcus lactis using metabolic engineering.
    Sybesma W; Burgess C; Starrenburg M; van Sinderen D; Hugenholtz J
    Metab Eng; 2004 Apr; 6(2):109-15. PubMed ID: 15113564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riboflavin bio-enrichment of soy beverage by selected roseoflavin-resistant and engineered lactic acid bacteria.
    Langa S; Peirotén Á; Rodríguez S; Calzada J; Prieto-Paredes R; Curiel JA; Landete JM
    Int J Food Microbiol; 2024 Feb; 411():110547. PubMed ID: 38150774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a Riboflavin-Producing Mutant of
    Xu F; Liu C; Xia M; Li S; Tu R; Wang S; Jin H; Zhang D
    Microorganisms; 2023 Apr; 11(4):. PubMed ID: 37110496
    [No Abstract]   [Full Text] [Related]  

  • 6. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism.
    Burgess CM; Slotboom DJ; Geertsma ER; Duurkens RH; Poolman B; van Sinderen D
    J Bacteriol; 2006 Apr; 188(8):2752-60. PubMed ID: 16585736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Microfluidics for the Screening of Yeast Libraries.
    Huang M; Joensson HN; Nielsen J
    Methods Mol Biol; 2018; 1671():307-317. PubMed ID: 29170967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ingestion of milk fermented by genetically modified Lactococcus lactis improves the riboflavin status of deficient rats.
    LeBlanc JG; Burgess C; Sesma F; Savoy de Giori G; van Sinderen D
    J Dairy Sci; 2005 Oct; 88(10):3435-42. PubMed ID: 16162516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactococcus lactis is capable of improving the riboflavin status in deficient rats.
    LeBlanc JG; Burgess C; Sesma F; de Giori GS; van Sinderen D
    Br J Nutr; 2005 Aug; 94(2):262-7. PubMed ID: 16115361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet-based microfluidics as a future tool for strain improvement in lactic acid bacteria.
    Chen J; Vestergaard M; Shen J; Solem C; Dufva M; Jensen PR
    FEMS Microbiol Lett; 2018 Dec; 365(23):. PubMed ID: 30357328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development and application of a droplet-based microfluidic high-throughput screening of Pichia pastoris].
    Lü T; Tu R; Yuan H; Liu H; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2019 Jul; 35(7):1317-1325. PubMed ID: 31328488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofortification of riboflavin and folate in idli batter, based on fermented cereal and pulse, by Lactococcus lactis N8 and Saccharomyces boulardii SAA655.
    Chandrasekar Rajendran SC; Chamlagain B; Kariluoto S; Piironen V; Saris PEJ
    J Appl Microbiol; 2017 Jun; 122(6):1663-1671. PubMed ID: 28339160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.
    Beneyton T; Thomas S; Griffiths AD; Nicaud JM; Drevelle A; Rossignol T
    Microb Cell Fact; 2017 Jan; 16(1):18. PubMed ID: 28143479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii.
    Jiménez A; Santos MA; Pompejus M; Revuelta JL
    Appl Environ Microbiol; 2005 Oct; 71(10):5743-51. PubMed ID: 16204483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic and molecular characterization of Lactococcus lactis from milk and plants.
    Nomura M; Kobayashi M; Narita T; Kimoto-Nira H; Okamoto T
    J Appl Microbiol; 2006 Aug; 101(2):396-405. PubMed ID: 16882147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica.
    Wagner JM; Liu L; Yuan SF; Venkataraman MV; Abate AR; Alper HS
    Metab Eng; 2018 May; 47():346-356. PubMed ID: 29698778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutraceutical production with food-grade microorganisms.
    Hugenholtz J; Smid EJ
    Curr Opin Biotechnol; 2002 Oct; 13(5):497-507. PubMed ID: 12459344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet-Based Microfluidic High-Throughput Screening of Enzyme Mutant Libraries Secreted by Yarrowia lipolytica.
    Beneyton T; Rossignol T
    Methods Mol Biol; 2021; 2307():205-219. PubMed ID: 33847992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systemic understanding of Lactococcus lactis response to acid stress using transcriptomics approaches.
    Zhu Z; Yang P; Wu Z; Zhang J; Du G
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1621-1629. PubMed ID: 31414323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.