These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Formation and characterization of chitosan-polylacticacid-polyethylene glycol-gelatin nanoparticles: a novel biosystem for controlled drug delivery. Rajan M; Raj V Carbohydr Polym; 2013 Oct; 98(1):951-8. PubMed ID: 23987433 [TBL] [Abstract][Full Text] [Related]
5. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Saraogi GK; Gupta P; Gupta UD; Jain NK; Agrawal GP Int J Pharm; 2010 Jan; 385(1-2):143-9. PubMed ID: 19819315 [TBL] [Abstract][Full Text] [Related]
6. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Chokshi NV; Khatri HN; Patel MM Drug Dev Ind Pharm; 2018 Dec; 44(12):1975-1989. PubMed ID: 30058392 [TBL] [Abstract][Full Text] [Related]
7. The role of the lecithin addition in the properties and cytotoxic activity of chitosan and chondroitin sulfate nanoparticles containing curcumin. Jardim KV; Siqueira JLN; Báo SN; Sousa MH; Parize AL Carbohydr Polym; 2020 Jan; 227():115351. PubMed ID: 31590861 [TBL] [Abstract][Full Text] [Related]
8. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Vieira ACC; Chaves LL; Pinheiro S; Pinto S; Pinheiro M; Lima SC; Ferreira D; Sarmento B; Reis S Int J Pharm; 2018 Jan; 536(1):478-485. PubMed ID: 29203137 [TBL] [Abstract][Full Text] [Related]
9. Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits. Tayel SA; El-Nabarawi MA; Tadros MI; Abd-Elsalam WH AAPS PharmSciTech; 2013 Jun; 14(2):782-93. PubMed ID: 23615773 [TBL] [Abstract][Full Text] [Related]
10. Release of rifampicin from chitosan, PLGA and chitosan-coated PLGA microparticles. Manca ML; Loy G; Zaru M; Fadda AM; Antimisiaris SG Colloids Surf B Biointerfaces; 2008 Dec; 67(2):166-70. PubMed ID: 18835764 [TBL] [Abstract][Full Text] [Related]
11. Development and optimization of polymeric nanoparticles of antitubercular drugs using central composite factorial design. Chawla R; Jaiswal S; Mishra B Expert Opin Drug Deliv; 2014 Jan; 11(1):31-43. PubMed ID: 23802585 [TBL] [Abstract][Full Text] [Related]
12. HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin. Rani S; Gothwal A; Pandey PK; Chauhan DS; Pachouri PK; Gupta UD; Gupta U Pharm Res; 2018 Dec; 36(1):19. PubMed ID: 30511238 [TBL] [Abstract][Full Text] [Related]
14. In vitro release kinetics of antituberculosis drugs from nanoparticles assessed using a modified dissolution apparatus. Gao Y; Zuo J; Bou-Chacra N; Pinto Tde J; Clas SD; Walker RB; Löbenberg R Biomed Res Int; 2013; 2013():136590. PubMed ID: 23936771 [TBL] [Abstract][Full Text] [Related]
15. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Rawal T; Parmar R; Tyagi RK; Butani S Colloids Surf B Biointerfaces; 2017 Jun; 154():321-330. PubMed ID: 28363192 [TBL] [Abstract][Full Text] [Related]
16. [Preparation, characterization, and pulmonary delivery of rifapentine liposomes modified by lauric diethanolamide]. Shu JY; Quan XY; Shu Y; Guang YP; Liu YC Yao Xue Xue Bao; 2006 Aug; 41(8):761-4. PubMed ID: 17039784 [TBL] [Abstract][Full Text] [Related]
17. The impact of preparation parameters on typical attributes of chitosan-heparin nanohydrogels: particle size, loading efficiency, and drug release. Shahbazi MA; Hamidi M Drug Dev Ind Pharm; 2013 Nov; 39(11):1774-82. PubMed ID: 23136990 [TBL] [Abstract][Full Text] [Related]
18. Development of Novel Octanoyl Chitosan Nanoparticles for Improved Rifampicin Pulmonary Delivery: Optimization by Factorial Design. Petkar KC; Chavhan S; Kunda N; Saleem I; Somavarapu S; Taylor KMG; Sawant KK AAPS PharmSciTech; 2018 May; 19(4):1758-1772. PubMed ID: 29589222 [TBL] [Abstract][Full Text] [Related]
19. Lipopolysaccharide Polyelectrolyte Complex for Oral Delivery of an Anti-tubercular Drug. Sumaila M; Ramburrun P; Kumar P; Choonara YE; Pillay V AAPS PharmSciTech; 2019 Feb; 20(3):107. PubMed ID: 30746572 [TBL] [Abstract][Full Text] [Related]
20. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles. Umerska A; Corrigan OI; Tajber L Int J Pharm; 2014 Dec; 477(1-2):102-12. PubMed ID: 25447822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]