These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28559547)

  • 1. Comparison of ocular biometric measurements between a new swept-source optical coherence tomography and a common optical low coherence reflectometry.
    Gao R; Chen H; Savini G; Miao Y; Wang X; Yang J; Zhao W; Wang Q; Huang J
    Sci Rep; 2017 May; 7(1):2484. PubMed ID: 28559547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement agreement between a new biometer based on partial coherence interferometry and a validated biometer based on optical low-coherence reflectometry.
    Li J; Chen H; Savini G; Lu W; Yu X; Bao F; Wang Q; Huang J
    J Cataract Refract Surg; 2016 Jan; 42(1):68-75. PubMed ID: 26948780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry.
    Hoffer KJ; Hoffmann PC; Savini G
    J Cataract Refract Surg; 2016 Aug; 42(8):1165-72. PubMed ID: 27531293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a New All-in-One Optical Biometer and Comparison With a Validated Swept-source OCT Biometer.
    Li Y; Zou Z; Xu S; Yu J; Ye Q; Li K; Xiao Y; Savini G; Schiano-Lomoriello D; Zhou X; Yao M; Huang J
    J Refract Surg; 2023 Dec; 39(12):825-830. PubMed ID: 38063829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison Study of the Two Biometers Based on Swept-Source Optical Coherence Tomography Technology.
    Dong J; Yao J; Chang S; Kanclerz P; Khoramnia R; Wang X
    Diagnostics (Basel); 2022 Feb; 12(3):. PubMed ID: 35328151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeatability of a fully automated swept-source optical coherence tomography biometer and agreement with a low coherence reflectometry biometer.
    Domínguez-Vicent A; Venkataraman AP; Dalin A; Brautaset R; Montés-Micó R
    Eye Vis (Lond); 2023 Jun; 10(1):24. PubMed ID: 37264436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry.
    Kunert KS; Peter M; Blum M; Haigis W; Sekundo W; Schütze J; Büehren T
    J Cataract Refract Surg; 2016 Jan; 42(1):76-83. PubMed ID: 26948781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer.
    Arriola-Villalobos P; Almendral-Gómez J; Garzón N; Ruiz-Medrano J; Fernández-Pérez C; Martínez-de-la-Casa JM; Díaz-Valle D
    Eye (Lond); 2017 Mar; 31(3):437-442. PubMed ID: 27834962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Optical Low-Coherence Reflectometry and Swept-Source OCT-Based Biometry Devices in Dense Cataracts.
    Vasavada SA; Patel P; Vaishnav VR; Ashena Z; Srivastava S; Vasavada V; Nanavaty MA
    J Refract Surg; 2020 Aug; 36(8):557-564. PubMed ID: 32785730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer.
    Shammas HJ; Ortiz S; Shammas MC; Kim SH; Chong C
    J Cataract Refract Surg; 2016 Jan; 42(1):50-61. PubMed ID: 26948778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of anterior segment measurements with optical low-coherence reflectometry and rotating dual Scheimpflug analysis.
    Huerva V; Ascaso FJ; Soldevila J; Lavilla L
    J Cataract Refract Surg; 2014 Jul; 40(7):1170-6. PubMed ID: 24852197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeatability and reproducibility of a new fully automatic measurement optical low coherence reflectometry biometer and agreement with swept-source optical coherence tomography-based biometer.
    Yu J; Zhao G; Lei CS; Wan T; Ning R; Xing W; Ma X; Pan H; Savini G; Schiano-Lomoriello D; Zhou X; Huang J
    Br J Ophthalmol; 2024 May; 108(5):673-678. PubMed ID: 37142332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agreement between a Spectral-Domain Ocular Coherence Tomography Biometer with a Swept-Source Ocular Coherence Tomography Biometer and an Optical Low-Coherence Reflectometry Biometer in Eyes with Cataract.
    Zarei-Ghanavati S; Nikpayam M; Namdari M; Bakhtiari E; Hassanzadeh S; Ziaei M
    J Curr Ophthalmol; 2023; 35(2):153-158. PubMed ID: 38250485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeatability and interobserver reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOLMaster.
    Huang J; Savini G; Hoffer KJ; Chen H; Lu W; Hu Q; Bao F; Wang Q
    Br J Ophthalmol; 2017 Apr; 101(4):493-498. PubMed ID: 27503393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biometry with a new swept-source optical coherence tomography biometer: Repeatability and agreement with an optical low-coherence reflectometry device.
    Kurian M; Negalur N; Das S; Puttaiah NK; Haria D; J TS; Thakkar MM
    J Cataract Refract Surg; 2016 Apr; 42(4):577-81. PubMed ID: 27113881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agreement Between Two Optical Biometers Based on Large Coherence Length SS-OCT and Scheimpflug Imaging/Partial Coherence Interferometry.
    Tu R; Yu J; Savini G; Ye J; Ning R; Xiong J; Chen S; Huang J
    J Refract Surg; 2020 Jul; 36(7):459-465. PubMed ID: 32644168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeatability and Agreement of a Swept-Source Optical Coherence Tomography-Based Biometer IOLMaster 700 Versus a Scheimpflug Imaging-Based Biometer AL-Scan in Cataract Patients.
    Chan TCY; Wan KH; Tang FY; Wang YM; Yu M; Cheung C
    Eye Contact Lens; 2020 Jan; 46(1):35-45. PubMed ID: 30985487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of keratometry and white-to-white measurements obtained by Lenstar with those obtained by autokeratometry and corneal topography.
    Huang J; Savini G; Su B; Zhu R; Feng Y; Lin S; Chen H; Wang Q
    Cont Lens Anterior Eye; 2015 Oct; 38(5):363-7. PubMed ID: 25956573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeatability and agreement of ocular biometry measurements: Aladdin versus Lenstar.
    McAlinden C; Gao R; Yu A; Wang X; Yang J; Yu Y; Chen H; Wang Q; Huang J
    Br J Ophthalmol; 2017 Sep; 101(9):1223-1229. PubMed ID: 28130351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of a New Optical Biometer That Combines Scheimpflug Imaging With Partial Coherence Interferometry With That of an Optical Biometer Based on Swept-Source Optical Coherence Tomography and Placido-Disk Topography.
    Chen S; Zhang Q; Savini G; Zhang S; Huang X; Yu J; Wang Y; Ning R; Huang J; Tu R
    Front Med (Lausanne); 2021; 8():814519. PubMed ID: 35223885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.