These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 2855973)

  • 1. Probing stability and dynamics of proteins by protease digestion. I: Comparison of protease susceptibility and thermal stability of cytochromes c.
    Endo S; Nagayama K; Wada A
    J Biomol Struct Dyn; 1985 Oct; 3(2):409-21. PubMed ID: 2855973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing stability and dynamics of proteins by protease digestion. II: Identification of the initial chymotryptic cleavage sites of homologous cytochromes c.
    Miki Y; Endo S; Giga-Hama Y; Tanji M; Wada A
    J Biomol Struct Dyn; 1988 Aug; 6(1):1-21. PubMed ID: 2856033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal denaturation of cytochromes c of horse cow, and Candida krusei in aqueous guanidine hydrochloride.
    Kawaguchi H; Noda H
    J Biochem; 1977 May; 81(5):1307-17. PubMed ID: 19430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the high energy states in proteins by proteolysis.
    Park C; Marqusee S
    J Mol Biol; 2004 Nov; 343(5):1467-76. PubMed ID: 15491624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Globular protein stability: aspects of interest in protein turnover.
    Pace CN; Fisher LM; Cupo JF
    Acta Biol Med Ger; 1981; 40(10-11):1385-92. PubMed ID: 6282021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability.
    Voordouw G; Milo C; Roche RS
    Biochemistry; 1976 Aug; 15(17):3716-24. PubMed ID: 8092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing local thermal stabilities of bovine, horse, and tuna ferricytochromes c at pH 7.
    Filosa A; English AM
    J Biol Inorg Chem; 2000 Aug; 5(4):448-54. PubMed ID: 10968615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of prostaglandin H synthase isoform structures using limited proteolytic digestion.
    Guo Q; Chang S; Diekman L; Xiao G; Kulmacz RJ
    Arch Biochem Biophys; 1997 Aug; 344(1):150-8. PubMed ID: 9244392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. Effects of acetylation, heat, urea and guanidine-hydrochloride.
    Hagihara Y; Tan Y; Goto Y
    J Mol Biol; 1994 Apr; 237(3):336-48. PubMed ID: 8145245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased susceptibility of cytosol proteins to proteolytic digestion during regression of a hormone-dependent mammary tumor.
    Rouleau M; Gullino PM
    Cancer Res; 1977 Mar; 37(3):670-7. PubMed ID: 837367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.
    Jaouadi B; Ellouz-Chaabouni S; Rhimi M; Bejar S
    Biochimie; 2008 Sep; 90(9):1291-305. PubMed ID: 18397761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional infrared correlation spectroscopy as a probe of sequential events in the thermal unfolding of cytochromes c.
    Filosa A; Wang Y; Ismail AA; English AM
    Biochemistry; 2001 Jul; 40(28):8256-63. PubMed ID: 11444971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the modelled structure of wheatwin1 by controlled proteolysis and sequence analysis of unfractionated digestion mixtures.
    Caporale C; Caruso C; Facchiano A; Nobile M; Leonardi L; Bertini L; Colonna G; Buonocore V
    Proteins; 1999 Aug; 36(2):192-204. PubMed ID: 10398366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lysine 73-->histidine variant of yeast iso-1-cytochrome c: evidence for a native-like intermediate in the unfolding pathway and implications for m value effects.
    Godbole S; Dong A; Garbin K; Bowler BE
    Biochemistry; 1997 Jan; 36(1):119-26. PubMed ID: 8993325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal unfolding and proteolytic susceptibility of ribonuclease A.
    Arnold U; Rücknagel KP; Schierhorn A; Ulbrich-Hofmann R
    Eur J Biochem; 1996 May; 237(3):862-9. PubMed ID: 8647135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for an unfolding and refolding pathway in cytochrome c.
    Xu Y; Mayne L; Englander SW
    Nat Struct Biol; 1998 Sep; 5(9):774-8. PubMed ID: 9731770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteolysis as a probe of thermal unfolding of cytochrome c.
    Wang L; Chen RX; Kallenbach NR
    Proteins; 1998 Mar; 30(4):435-41. PubMed ID: 9533627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.