These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28559791)

  • 1. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera.
    Clausner T; Dalal SS; Crespo-García M
    Front Neurosci; 2017; 11():264. PubMed ID: 28559791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single camera photogrammetry system for multi-angle fast localization of EEG electrodes.
    Qian S; Sheng Y
    Ann Biomed Eng; 2011 Nov; 39(11):2844-56. PubMed ID: 21818532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single camera photogrammetry system for EEG electrode identification and localization.
    Baysal U; Sengül G
    Ann Biomed Eng; 2010 Apr; 38(4):1539-47. PubMed ID: 20186487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial localization of EEG electrodes using 3D scanning.
    Taberna GA; Marino M; Ganzetti M; Mantini D
    J Neural Eng; 2019 Apr; 16(2):026020. PubMed ID: 30634182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithmic localization of high-density EEG electrode positions using motion capture.
    Hirth LN; Stanley CJ; Damiano DL; Bulea TC
    J Neurosci Methods; 2020 Dec; 346():108919. PubMed ID: 32853593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions.
    Homölle S; Oostenveld R
    J Neurosci Methods; 2019 Oct; 326():108378. PubMed ID: 31376413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of EEG electrode position error on ultimate beamformer source reconstruction performance.
    Dalal SS; Rampp S; Willomitzer F; Ettl S
    Front Neurosci; 2014; 8():42. PubMed ID: 24653671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Localization of EEG Electrodes in a TOF+CCD Camera System.
    Chen S; He Y; Qiu H; Yan X; Zhao M
    Front Neuroinform; 2019; 13():21. PubMed ID: 31024285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On electromagnetic head digitization in MEG and EEG.
    Jaiswal A; Nenonen J; Parkkonen L
    Sci Rep; 2023 Mar; 13(1):3801. PubMed ID: 36882438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of high-density EEG electrode position measurement using an optical scanner compared with the photogrammetry method.
    Györfi O; Ip CT; Justesen AB; Gam-Jensen ML; Rømer C; Fabricius M; Pinborg LH; Beniczky S
    Clin Neurophysiol Pract; 2022; 7():135-138. PubMed ID: 35620351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG electrode localization with 3D iPhone scanning using point-cloud electrode selection (PC-ES).
    Everitt A; Richards H; Song Y; Smith J; Kobylarz E; Lukovits T; Halter R; Murphy E
    J Neural Eng; 2023 Dec; 20(6):. PubMed ID: 38055968
    [No Abstract]   [Full Text] [Related]  

  • 13. Spatial localization of EEG electrodes.
    Koessler L; Maillard L; Benhadid A; Vignal JP; Braun M; Vespignani H
    Neurophysiol Clin; 2007; 37(2):97-102. PubMed ID: 17540292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-registration of EEG and MRI data using matching of spline interpolated and MRI-segmented reconstructions of the scalp surface.
    Lamm C; Windischberger C; Leodolter U; Moser E; Bauer H
    Brain Topogr; 2001; 14(2):93-100. PubMed ID: 11797814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geodesic photogrammetry for localizing sensor positions in dense-array EEG.
    Russell GS; Jeffrey Eriksen K; Poolman P; Luu P; Tucker DM
    Clin Neurophysiol; 2005 May; 116(5):1130-40. PubMed ID: 15826854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated detection and labeling of high-density EEG electrodes from structural MR images.
    Marino M; Liu Q; Brem S; Wenderoth N; Mantini D
    J Neural Eng; 2016 Oct; 13(5):056003. PubMed ID: 27484621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semi-automatic method to determine electrode positions and labels from gel artifacts in EEG/fMRI-studies.
    de Munck JC; van Houdt PJ; Verdaasdonk RM; Ossenblok PP
    Neuroimage; 2012 Jan; 59(1):399-403. PubMed ID: 21784161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate digitization of EEG electrode locations by electromagnetic tracking system: The proposed head rotation method and comparison against optical system.
    Kaneko N; Yokoyama M; Nakazawa K; Yokoyama H
    MethodsX; 2024 Jun; 12():102766. PubMed ID: 38808097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of an MEG device as 3D digitizer and motion monitoring system.
    de Munck JC; Verbunt JP; Van't Ent D; Van Dijk BW
    Phys Med Biol; 2001 Aug; 46(8):2041-52. PubMed ID: 11512609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-Automated and Direct Localization and Labeling of EEG Electrodes Using MR Structural Images for Simultaneous fMRI-EEG.
    Bhutada AS; Sepúlveda P; Torres R; Ossandón T; Ruiz S; Sitaram R
    Front Neurosci; 2020; 14():558981. PubMed ID: 33414699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.