These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28559791)

  • 21. EEG electrode digitization with commercial virtual reality hardware.
    Cline CC; Coogan C; He B
    PLoS One; 2018; 13(11):e0207516. PubMed ID: 30462691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Faster and improved 3-D head digitization in MEG using Kinect.
    Vema Krishna Murthy S; MacLellan M; Beyea S; Bardouille T
    Front Neurosci; 2014; 8():326. PubMed ID: 25389382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of volume conductor and source models to localize epileptic foci.
    Fuchs M; Wagner M; Kastner J
    J Clin Neurophysiol; 2007 Apr; 24(2):101-19. PubMed ID: 17414966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity of CIPS-computed PVC location to measurement errors in ECG electrode position: the need for the 3D camera.
    van Dam PM; Gordon JP; Laks M
    J Electrocardiol; 2014; 47(6):788-93. PubMed ID: 25194874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photogrammetry-based stereoscopic optode registration method for functional near-infrared spectroscopy.
    Hu XS; Wagley N; Rioboo AT; DaSilva A; Kovelman I
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32880124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A rapid method for determining standard 10/10 electrode positions for high resolution EEG studies.
    Le J; Lu M; Pellouchoud E; Gevins A
    Electroencephalogr Clin Neurophysiol; 1998 Jun; 106(6):554-8. PubMed ID: 9741756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic Detection of Fiducial Landmarks Toward the Development of an Application for Digitizing the Locations of EEG Electrodes: Occipital Structure Sensor-Based Work.
    Gallego Martínez EE; González Mitjans A; Garea-Llano E; Bringas-Vega ML; Valdes-Sosa PA
    Front Neurosci; 2021; 15():526257. PubMed ID: 33994912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. More Reliable EEG Electrode Digitizing Methods Can Reduce Source Estimation Uncertainty, but Current Methods Already Accurately Identify Brodmann Areas.
    Shirazi SY; Huang HJ
    Front Neurosci; 2019; 13():1159. PubMed ID: 31787866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating a neutral reference for electroencephalographic recordings: the importance of using a high-density montage and a realistic head model.
    Liu Q; Balsters JH; Baechinger M; van der Groen O; Wenderoth N; Mantini D
    J Neural Eng; 2015 Oct; 12(5):056012. PubMed ID: 26305167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using a motion capture system for spatial localization of EEG electrodes.
    Reis PM; Lochmann M
    Front Neurosci; 2015; 9():130. PubMed ID: 25941468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved localization accuracy in magnetic source imaging using a 3-D laser scanner.
    Bardouille T; Krishnamurthy SV; Hajra SG; D'Arcy RC
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3491-7. PubMed ID: 23033325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of subdural electrode displacement in invasive epilepsy surgery workup using neuronavigation and intraoperative MRI.
    Sommer B; Rampp S; Doerfler A; Stefan H; Hamer HM; Buchfelder M; Roessler K
    Neurol Res; 2018 Oct; 40(10):811-821. PubMed ID: 29916770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scalp-recorded EEG localization in MRI volume data.
    Brinkmann BH; O'Brien TJ; Dresner MA; Lagerlund TD; Sharbrough FW; Robb RA
    Brain Topogr; 1998; 10(4):245-53. PubMed ID: 9672223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes.
    Pieters TA; Conner CR; Tandon N
    J Neurosurg; 2013 May; 118(5):1086-97. PubMed ID: 23495883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetoencephalography recording and analysis.
    Velmurugan J; Sinha S; Satishchandra P
    Ann Indian Acad Neurol; 2014 Mar; 17(Suppl 1):S113-9. PubMed ID: 24791077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A practical method for quickly determining electrode positions in high-density EEG studies.
    He P; Estepp JR
    Neurosci Lett; 2013 Apr; 541():73-6. PubMed ID: 23485737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Error bounds for EEG and MEG dipole source localization.
    Mosher JC; Spencer ME; Leahy RM; Lewis PS
    Electroencephalogr Clin Neurophysiol; 1993 May; 86(5):303-21. PubMed ID: 7685264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MEG versus EEG localization test using implanted sources in the human brain.
    Cohen D; Cuffin BN; Yunokuchi K; Maniewski R; Purcell C; Cosgrove GR; Ives J; Kennedy JG; Schomer DL
    Ann Neurol; 1990 Dec; 28(6):811-7. PubMed ID: 2285267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of improved MEG-MRI co-registration on MEG connectivity analysis.
    Chella F; Marzetti L; Stenroos M; Parkkonen L; Ilmoniemi RJ; Romani GL; Pizzella V
    Neuroimage; 2019 Aug; 197():354-367. PubMed ID: 31029868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coregistration of digital photography of the human cortex and cranial magnetic resonance imaging for visualization of subdural electrodes in epilepsy surgery.
    Mahvash M; König R; Wellmer J; Urbach H; Meyer B; Schaller K
    Neurosurgery; 2007 Nov; 61(5 Suppl 2):340-4; discussion 344-5. PubMed ID: 18091249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.