These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28559808)

  • 1. Constructing Neuronal Network Models in Massively Parallel Environments.
    Ippen T; Eppler JM; Plesser HE; Diesmann M
    Front Neuroinform; 2017; 11():30. PubMed ID: 28559808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiking network simulation code for petascale computers.
    Kunkel S; Schmidt M; Eppler JM; Plesser HE; Masumoto G; Igarashi J; Ishii S; Fukai T; Morrison A; Diesmann M; Helias M
    Front Neuroinform; 2014; 8():78. PubMed ID: 25346682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.
    Jordan J; Ippen T; Helias M; Kitayama I; Sato M; Igarashi J; Diesmann M; Kunkel S
    Front Neuroinform; 2018; 12():2. PubMed ID: 29503613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meeting the memory challenges of brain-scale network simulation.
    Kunkel S; Potjans TC; Eppler JM; Plesser HE; Morrison A; Diesmann M
    Front Neuroinform; 2011; 5():35. PubMed ID: 22291636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method.
    Igarashi J; Yamaura H; Yamazaki T
    Front Neuroinform; 2019; 13():71. PubMed ID: 31849631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code.
    Kunkel S; Schenck W
    Front Neuroinform; 2017; 11():40. PubMed ID: 28701946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercomputers ready for use as discovery machines for neuroscience.
    Helias M; Kunkel S; Masumoto G; Igarashi J; Eppler JM; Ishii S; Fukai T; Morrison A; Diesmann M
    Front Neuroinform; 2012; 6():26. PubMed ID: 23129998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Routing Brain Traffic Through the Von Neumann Bottleneck: Parallel Sorting and Refactoring.
    Pronold J; Jordan J; Wylie BJN; Kitayama I; Diesmann M; Kunkel S
    Front Neuroinform; 2021; 15():785068. PubMed ID: 35300490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions.
    Jordan J; Helias M; Diesmann M; Kunkel S
    Front Neuroinform; 2020; 14():12. PubMed ID: 32431602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations.
    Hahne J; Helias M; Kunkel S; Igarashi J; Bolten M; Frommer A; Diesmann M
    Front Neuroinform; 2015; 9():22. PubMed ID: 26441628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.
    Feldotto B; Eppler JM; Jimenez-Romero C; Bignamini C; Gutierrez CE; Albanese U; Retamino E; Vorobev V; Zolfaghari V; Upton A; Sun Z; Yamaura H; Heidarinejad M; Klijn W; Morrison A; Cruz F; McMurtrie C; Knoll AC; Igarashi J; Yamazaki T; Doya K; Morin FO
    Front Neuroinform; 2022; 16():884180. PubMed ID: 35662903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms.
    Pesce LL; Lee HC; Hereld M; Visser S; Stevens RL; Wildeman A; van Drongelen W
    Comput Math Methods Med; 2013; 2013():182145. PubMed ID: 24416069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topical perspective on massive threading and parallelism.
    Farber RM
    J Mol Graph Model; 2011 Sep; 30():82-9. PubMed ID: 21764615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling Large-Scale Simulations With the GENESIS Neuronal Simulator.
    Crone JC; Vindiola MM; Yu AB; Boothe DL; Beeman D; Oie KS; Franaszczuk PJ
    Front Neuroinform; 2019; 13():69. PubMed ID: 31803040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translating network models to parallel hardware in NEURON.
    Hines ML; Carnevale NT
    J Neurosci Methods; 2008 Apr; 169(2):425-55. PubMed ID: 17997162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speeding up parallel GROMACS on high-latency networks.
    Kutzner C; van der Spoel D; Fechner M; Lindahl E; Schmitt UW; de Groot BL; Grubmüller H
    J Comput Chem; 2007 Sep; 28(12):2075-84. PubMed ID: 17405124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asynchronous Branch-Parallel Simulation of Detailed Neuron Models.
    Magalhães BRC; Sterling T; Hines M; Schürmann F
    Front Neuroinform; 2019; 13():54. PubMed ID: 31396069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU.
    Jiang H; Ganesan N
    BMC Bioinformatics; 2016 Feb; 17():106. PubMed ID: 26920848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
    Slażyński L; Bohte S
    Network; 2012; 23(4):183-211. PubMed ID: 23098420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.