These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 28559880)

  • 41. The crucial role of bacterial laccases in the bioremediation of petroleum hydrocarbons.
    Zhang Y; Lin DF; Hao J; Zhao ZH; Zhang YJ
    World J Microbiol Biotechnol; 2020 Jul; 36(8):116. PubMed ID: 32661601
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diversity of Ligninolytic Enzymes and Their Genes in Strains of the Genus
    Torres-Farradá G; Manzano León AM; Rineau F; Ledo Alonso LL; Sánchez-López MI; Thijs S; Colpaert J; Ramos-Leal M; Guerra G; Vangronsveld J
    Front Microbiol; 2017; 8():898. PubMed ID: 28588565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A highly thermotolerant laccase produced by Cerrena unicolor strain CGMCC 5.1011 for complete and stable malachite green decolorization.
    Yao Y; Zhou G; Lin Y; Xu X; Yang J
    AMB Express; 2020 Oct; 10(1):178. PubMed ID: 33006679
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra.
    Reiss R; Ihssen J; Richter M; Eichhorn E; Schilling B; Thöny-Meyer L
    PLoS One; 2013; 8(6):e65633. PubMed ID: 23755261
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laccase producing bacteria influenced the high decolorization of textile azo dyes with advanced study.
    Khaled JM; Alyahya SA; Govindan R; Chelliah CK; Maruthupandy M; Alharbi NS; Kadaikunnan S; Issac R; Murugan S; Li WJ
    Environ Res; 2022 May; 207():112211. PubMed ID: 34656634
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes.
    Cañas AI; Camarero S
    Biotechnol Adv; 2010; 28(6):694-705. PubMed ID: 20471466
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laccase: Various types and applications.
    Khatami SH; Vakili O; Movahedpour A; Ghesmati Z; Ghasemi H; Taheri-Anganeh M
    Biotechnol Appl Biochem; 2022 Dec; 69(6):2658-2672. PubMed ID: 34997643
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular Docking of Lac_CB10: Highlighting the Great Potential for Bioremediation of Recalcitrant Chemical Compounds by One Predicted Bacteroidetes CopA-Laccase.
    Buzzo BB; Giuliatti S; Pereira PAM; Gomes-Pepe ES; Lemos EGM
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laccase production at reactor scale by filamentous fungi.
    Couto SR; Toca-Herrera JL
    Biotechnol Adv; 2007; 25(6):558-69. PubMed ID: 17706395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Copper-induced Production of Laccases for Lignin Depolymerisation and Micropollutant Degradation by Laccase-mediator Systems.
    Pillet L; Dufresne R; Crelier S
    Chimia (Aarau); 2021 Dec; 75(12):1058-1065. PubMed ID: 34920781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrafast synthesis of laccase-copper phosphate hybrid nanoflowers for efficient degradation of tetracycline antibiotics.
    Han Z; Wang H; Zheng J; Wang S; Yu S; Lu L
    Environ Res; 2023 Jan; 216(Pt 3):114690. PubMed ID: 36334825
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Industrial and biotechnological applications of laccases: a review.
    Rodríguez Couto S; Toca Herrera JL
    Biotechnol Adv; 2006; 24(5):500-13. PubMed ID: 16716556
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Induction and transcriptional regulation of laccases in fungi.
    Piscitelli A; Giardina P; Lettera V; Pezzella C; Sannia G; Faraco V
    Curr Genomics; 2011 Apr; 12(2):104-12. PubMed ID: 21966248
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laccases from Aureobasidium pullulans.
    Rich JO; Leathers TD; Anderson AM; Bischoff KM; Manitchotpisit P
    Enzyme Microb Technol; 2013 Jun; 53(1):33-7. PubMed ID: 23683702
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of laccases from Trametes hirsuta in the context of bioremediation of wastewater treatment plant effluent.
    El Yagoubi Y; Lemieux B; Segura PA; Cabana H
    Enzyme Microb Technol; 2023 Dec; 171():110308. PubMed ID: 37660578
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Upgrading Laccase Production and Biochemical Properties: Strategies and Challenges.
    Bertrand B; Martínez-Morales F; Trejo-Hernández MR
    Biotechnol Prog; 2017 Jul; 33(4):1015-1034. PubMed ID: 28393483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Trametes hirsuta 072 laccase multigene family: Genes identification and transcriptional analysis under copper ions induction.
    Vasina DV; Mustafaev ON; Moiseenko KV; Sadovskaya NS; Glazunova OA; Tyurin АА; Fedorova TV; Pavlov AR; Tyazhelova TV; Goldenkova-Pavlova IV; Koroleva OV
    Biochimie; 2015 Sep; 116():154-64. PubMed ID: 26196690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combined sequence and structure analysis of the fungal laccase family.
    Kumar SV; Phale PS; Durani S; Wangikar PP
    Biotechnol Bioeng; 2003 Aug; 83(4):386-94. PubMed ID: 12800133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diverse Metabolic Capacities of Fungi for Bioremediation.
    Deshmukh R; Khardenavis AA; Purohit HJ
    Indian J Microbiol; 2016 Sep; 56(3):247-64. PubMed ID: 27407289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Introducing a Thermo-Alkali-Stable, Metallic Ion-Tolerant Laccase Purified From White Rot Fungus
    Si J; Ma H; Cao Y; Cui B; Dai Y
    Front Microbiol; 2021; 12():670163. PubMed ID: 34093489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.