These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 28559887)
1. CRP Regulates D-Lactate Oxidation in Kasai T; Kouzuma A; Watanabe K Front Microbiol; 2017; 8():869. PubMed ID: 28559887 [No Abstract] [Full Text] [Related]
2. Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of Kasai T; Suzuki Y; Kouzuma A; Watanabe K Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30504209 [No Abstract] [Full Text] [Related]
3. Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. Kasai T; Kouzuma A; Nojiri H; Watanabe K BMC Microbiol; 2015 Mar; 15():68. PubMed ID: 25886963 [TBL] [Abstract][Full Text] [Related]
4. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor. Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823 [TBL] [Abstract][Full Text] [Related]
5. Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role. Kees ED; Pendleton AR; Paquete CM; Arriola MB; Kane AL; Kotloski NJ; Intile PJ; Gralnick JA Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175188 [No Abstract] [Full Text] [Related]
6. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Pinchuk GE; Rodionov DA; Yang C; Li X; Osterman AL; Dervyn E; Geydebrekht OV; Reed SB; Romine MF; Collart FR; Scott JH; Fredrickson JK; Beliaev AS Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2874-9. PubMed ID: 19196979 [TBL] [Abstract][Full Text] [Related]
7. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Pinchuk GE; Geydebrekht OV; Hill EA; Reed JL; Konopka AE; Beliaev AS; Fredrickson JK Appl Environ Microbiol; 2011 Dec; 77(23):8234-40. PubMed ID: 21965410 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation. Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561 [TBL] [Abstract][Full Text] [Related]
9. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth. Duhl KL; Tefft NM; TerAvest MA Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176 [No Abstract] [Full Text] [Related]
10. Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis. Toporek YJ; Mok JK; Shin HD; Lee BD; Lee MH; DiChristina TJ Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446562 [TBL] [Abstract][Full Text] [Related]
11. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. Charania MA; Brockman KL; Zhang Y; Banerjee A; Pinchuk GE; Fredrickson JK; Beliaev AS; Saffarini DA J Bacteriol; 2009 Jul; 191(13):4298-306. PubMed ID: 19395492 [TBL] [Abstract][Full Text] [Related]
12. Aerobic Respiration and Its Regulation in the Metal Reducer Bertling K; Banerjee A; Saffarini D Front Microbiol; 2021; 12():723835. PubMed ID: 34566926 [No Abstract] [Full Text] [Related]
13. CpdA is involved in amino acid metabolism in Shewanella oneidensis MR-1. Kasai T; Kouzuma A; Watanabe K Biosci Biotechnol Biochem; 2018 Jan; 82(1):166-172. PubMed ID: 29235426 [TBL] [Abstract][Full Text] [Related]
14. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Kouzuma A; Kasai T; Hirose A; Watanabe K Front Microbiol; 2015; 6():609. PubMed ID: 26136738 [TBL] [Abstract][Full Text] [Related]
15. ArcB1, a homolog of Escherichia coli ArcB, regulates dimethyl sulfoxide reduction in Shewanella oneidensis MR-1. Shroff NP; Charania MA; Saffarini DA J Bacteriol; 2010 Jun; 192(12):3227-30. PubMed ID: 20400540 [TBL] [Abstract][Full Text] [Related]
16. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Bretschger O; Obraztsova A; Sturm CA; Chang IS; Gorby YA; Reed SB; Culley DE; Reardon CL; Barua S; Romine MF; Zhou J; Beliaev AS; Bouhenni R; Saffarini D; Mansfeld F; Kim BH; Fredrickson JK; Nealson KH Appl Environ Microbiol; 2007 Nov; 73(21):7003-12. PubMed ID: 17644630 [TBL] [Abstract][Full Text] [Related]
17. Supplementation with Amino Acid Sources Facilitates Fermentative Growth of Shewanella oneidensis MR-1 in Defined Media. Ikeda S; Tomita K; Nakagawa G; Kouzuma A; Watanabe K Appl Environ Microbiol; 2023 Jul; 89(7):e0086823. PubMed ID: 37367298 [TBL] [Abstract][Full Text] [Related]
18. Crp-dependent cytochrome bd oxidase confers nitrite resistance to Shewanella oneidensis. Fu H; Chen H; Wang J; Zhou G; Zhang H; Zhang L; Gao H Environ Microbiol; 2013 Aug; 15(8):2198-212. PubMed ID: 23414111 [TBL] [Abstract][Full Text] [Related]
19. Growth Trade-Offs Accompany the Emergence of Glycolytic Metabolism in Shewanella oneidensis MR-1. Chubiz LM; Marx CJ J Bacteriol; 2017 Jun; 199(11):. PubMed ID: 28289083 [TBL] [Abstract][Full Text] [Related]
20. Identification and analysis of the Shewanella oneidensis major oxygen-independent coproporphyrinogen III oxidase gene. Al-Sheboul S; Saffarini D Anaerobe; 2011 Dec; 17(6):501-5. PubMed ID: 21726654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]