These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 28560880)
1. Quantitative Proteomics Analysis Confirmed Oxidative Metabolism Predominates in Streptomyces coelicolor versus Glycolytic Metabolism in Streptomyces lividans. Millan-Oropeza A; Henry C; Blein-Nicolas M; Aubert-Frambourg A; Moussa F; Bleton J; Virolle MJ J Proteome Res; 2017 Jul; 16(7):2597-2613. PubMed ID: 28560880 [TBL] [Abstract][Full Text] [Related]
2. Proteomics-driven identification of SCO4677-dependent proteins in Streptomyces lividans and Streptomyces coelicolor. Choi SS; Kim SH; Kim ES J Microbiol Biotechnol; 2010 Mar; 20(3):480-4. PubMed ID: 20372015 [TBL] [Abstract][Full Text] [Related]
3. Expression of genes of the Pho regulon is altered in Streptomyces coelicolor. Millan-Oropeza A; Henry C; Lejeune C; David M; Virolle MJ Sci Rep; 2020 May; 10(1):8492. PubMed ID: 32444655 [TBL] [Abstract][Full Text] [Related]
4. The stringent response is strongly activated in the antibiotic producing strain, Streptomyces coelicolor. Lejeune C; Cornu D; Sago L; Redeker V; Virolle MJ Res Microbiol; 2024; 175(4):104177. PubMed ID: 38159786 [TBL] [Abstract][Full Text] [Related]
5. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization. Lewis RA; Laing E; Allenby N; Bucca G; Brenner V; Harrison M; Kierzek AM; Smith CP BMC Genomics; 2010 Dec; 11():682. PubMed ID: 21122120 [TBL] [Abstract][Full Text] [Related]
6. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. Jayapal KP; Lian W; Glod F; Sherman DH; Hu WS BMC Genomics; 2007 Jul; 8():229. PubMed ID: 17623098 [TBL] [Abstract][Full Text] [Related]
7. Strong antibiotic production is correlated with highly active oxidative metabolism in Streptomyces coelicolor M145. Esnault C; Dulermo T; Smirnov A; Askora A; David M; Deniset-Besseau A; Holland IB; Virolle MJ Sci Rep; 2017 Mar; 7(1):200. PubMed ID: 28298624 [TBL] [Abstract][Full Text] [Related]
8. A Proteomic Analysis Indicates That Oxidative Stress Is the Common Feature Triggering Antibiotic Production in Lejeune C; Sago L; Cornu D; Redeker V; Virolle MJ Front Microbiol; 2021; 12():813993. PubMed ID: 35392450 [TBL] [Abstract][Full Text] [Related]
9. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Jin XM; Chang YK; Lee JH; Hong SK J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222 [TBL] [Abstract][Full Text] [Related]
10. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in Clara L; David C; Laila S; Virginie R; Marie-Joelle V Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499130 [No Abstract] [Full Text] [Related]
11. Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism. Guyet A; Benaroudj N; Proux C; Gominet M; Coppée JY; Mazodier P BMC Microbiol; 2014 Apr; 14():81. PubMed ID: 24694298 [TBL] [Abstract][Full Text] [Related]
12. A putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance. Hoshino K; Imai Y; Mukai K; Hamauzu R; Ochi K; Hosaka T Appl Microbiol Biotechnol; 2020 Mar; 104(5):2193-2203. PubMed ID: 31925486 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083 [TBL] [Abstract][Full Text] [Related]
15. Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Gubbens J; Janus MM; Florea BI; Overkleeft HS; van Wezel GP Mol Microbiol; 2012 Dec; 86(6):1490-507. PubMed ID: 23078239 [TBL] [Abstract][Full Text] [Related]
16. The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Tiffert Y; Supra P; Wurm R; Wohlleben W; Wagner R; Reuther J Mol Microbiol; 2008 Feb; 67(4):861-80. PubMed ID: 18179599 [TBL] [Abstract][Full Text] [Related]
17. Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type β-agarase-producing neoagarobiose. Temuujin U; Chi WJ; Chang YK; Hong SK J Bacteriol; 2012 Jan; 194(1):142-9. PubMed ID: 22020647 [TBL] [Abstract][Full Text] [Related]
18. Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor. Navone L; Casati P; Licona-Cassani C; Marcellin E; Nielsen LK; Rodriguez E; Gramajo H Appl Microbiol Biotechnol; 2014 Jan; 98(1):351-60. PubMed ID: 24292080 [TBL] [Abstract][Full Text] [Related]
19. The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island. Cruz-Morales P; Vijgenboom E; Iruegas-Bocardo F; Girard G; Yáñez-Guerra LA; Ramos-Aboites HE; Pernodet JL; Anné J; van Wezel GP; Barona-Gómez F Genome Biol Evol; 2013; 5(6):1165-75. PubMed ID: 23709624 [TBL] [Abstract][Full Text] [Related]
20. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Temuujin U; Chi WJ; Lee SY; Chang YK; Hong SK Appl Microbiol Biotechnol; 2011 Nov; 92(4):749-59. PubMed ID: 21655986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]