BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 28561031)

  • 1. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging.
    Liu M; Li Q; Liang L; Li J; Wang K; Li J; Lv M; Chen N; Song H; Lee J; Shi J; Wang L; Lal R; Fan C
    Nat Commun; 2017 May; 8():15646. PubMed ID: 28561031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular uptake, transport, and processing of gold nanostructures.
    Chithrani DB
    Mol Membr Biol; 2010 Oct; 27(7):299-311. PubMed ID: 20929337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular transport pathways of polymer coated gold nanoparticles.
    Lin IC; Liang M; Liu TY; Monteiro MJ; Toth I
    Nanomedicine; 2012 Jan; 8(1):8-11. PubMed ID: 22024197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention.
    Yang C; Uertz J; Yohan D; Chithrani BD
    Nanoscale; 2014 Oct; 6(20):12026-33. PubMed ID: 25182693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle Spikes Enhance Cellular Uptake via Regulating Myosin IIA Recruitment.
    Huang L; Mao X; Li J; Li Q; Shen J; Liu M; Fan C; Tian Y
    ACS Nano; 2023 May; 17(10):9155-9166. PubMed ID: 37171255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier.
    Chithrani DB; Dunne M; Stewart J; Allen C; Jaffray DA
    Nanomedicine; 2010 Feb; 6(1):161-9. PubMed ID: 19447206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pericellular matrix enhances retention and cellular uptake of nanoparticles.
    Zhou R; Zhou H; Xiong B; He Y; Yeung ES
    J Am Chem Soc; 2012 Aug; 134(32):13404-9. PubMed ID: 22861162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells.
    Hao X; Wu J; Shan Y; Cai M; Shang X; Jiang J; Wang H
    J Phys Condens Matter; 2012 Apr; 24(16):164207. PubMed ID: 22466161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding Live Cell Interactions with Multi-Nanoparticle Systems: Differential Implications for Uptake, Trafficking, and Gene Regulation.
    Liang L; Liu Z; Barman I
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33659-33666. PubMed ID: 31436085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence-encoded gold nanoparticles: library design and modulation of cellular uptake into dendritic cells.
    Rodriguez-Lorenzo L; Fytianos K; Blank F; von Garnier C; Rothen-Rutishauser B; Petri-Fink A
    Small; 2014 Apr; 10(7):1341-50. PubMed ID: 24482355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-Dependent Cellular Uptake of DNA Functionalized Gold Nanoparticles.
    Wong AC; Wright DW
    Small; 2016 Oct; 12(40):5592-5600. PubMed ID: 27562251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles.
    Gao X; Wang T; Wu B; Chen J; Chen J; Yue Y; Dai N; Chen H; Jiang X
    Biochem Biophys Res Commun; 2008 Dec; 377(1):35-40. PubMed ID: 18823949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells.
    Yang L; Shang L; Nienhaus GU
    Nanoscale; 2013 Feb; 5(4):1537-43. PubMed ID: 23322237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of nanoparticles as endocytic tracers in cellular microbiology.
    Zhang Y; Hensel M
    Nanoscale; 2013 Oct; 5(19):9296-309. PubMed ID: 23942623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of the cellular entry of polystyrene and gold nanoparticles using the freeze concentration method.
    Ahmed S; Okuma K; Matsumura K
    Biomater Sci; 2018 Jun; 6(7):1791-1799. PubMed ID: 29781016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endocytosis-driven gold nanoparticle fractal rearrangement in cells and its influence on photothermal conversion.
    Mulens-Arias V; Balfourier A; Nicolás-Boluda A; Carn F; Gazeau F
    Nanoscale; 2020 Nov; 12(42):21832-21849. PubMed ID: 33104150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres.
    ; Malugin A; Ghandehari H
    J Appl Toxicol; 2010 Apr; 30(3):212-7. PubMed ID: 19902477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent endocytosis of single gold nanoparticles.
    Shan Y; Ma S; Nie L; Shang X; Hao X; Tang Z; Wang H
    Chem Commun (Camb); 2011 Jul; 47(28):8091-3. PubMed ID: 21687845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating exocytosis of nanoparticles via host-guest chemistry.
    Kim C; Tonga GY; Yan B; Kim CS; Kim ST; Park MH; Zhu Z; Duncan B; Creran B; Rotello VM
    Org Biomol Chem; 2015 Feb; 13(8):2474-2479. PubMed ID: 25569869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.