These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28561053)

  • 1. Mitochondria link metabolism and epigenetics in haematopoiesis.
    Schell JC; Rutter J
    Nat Cell Biol; 2017 May; 19(6):589-591. PubMed ID: 28561053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy maintains the metabolism and function of young and old stem cells.
    Ho TT; Warr MR; Adelman ER; Lansinger OM; Flach J; Verovskaya EV; Figueroa ME; Passegué E
    Nature; 2017 Mar; 543(7644):205-210. PubMed ID: 28241143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MYSTerious MOZ, a histone acetyltransferase with a key role in haematopoiesis.
    Perez-Campo FM; Costa G; Lie-a-Ling M; Kouskoff V; Lacaud G
    Immunology; 2013 Jun; 139(2):161-5. PubMed ID: 23347099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex Interactions in Regulation of Haematopoiesis-An Unexplored Iron Mine.
    De R; Prakash KU; Edison ES
    Genes (Basel); 2021 Aug; 12(8):. PubMed ID: 34440444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring cell differentiation processes based on phylogenetic analysis of genome-wide epigenetic information: hematopoiesis as a model case.
    Koyanagi KO
    Genome Biol Evol; 2015 Jan; 7(3):699-705. PubMed ID: 25638259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of haematopoiesis.
    Göttgens B
    Vox Sang; 2004 Jul; 87 Suppl1():15-9. PubMed ID: 15200597
    [No Abstract]   [Full Text] [Related]  

  • 7. STAT5-regulated microRNA-193b controls haematopoietic stem and progenitor cell expansion by modulating cytokine receptor signalling.
    Haetscher N; Feuermann Y; Wingert S; Rehage M; Thalheimer FB; Weiser C; Bohnenberger H; Jung K; Schroeder T; Serve H; Oellerich T; Hennighausen L; Rieger MA
    Nat Commun; 2015 Nov; 6():8928. PubMed ID: 26603207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stem cells "aclymatise" to regenerate the blood system.
    Lisi-Vega LE; Méndez-Ferrer S
    EMBO J; 2022 Apr; 41(8):e110942. PubMed ID: 35274751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate.
    Zhang C; Meng Y; Han J
    Cell Mol Life Sci; 2024 Jan; 81(1):26. PubMed ID: 38212548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ROS rheostat for cell fate regulation.
    Maryanovich M; Gross A
    Trends Cell Biol; 2013 Mar; 23(3):129-34. PubMed ID: 23117019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A PI3K p110β-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis.
    Yuzugullu H; Baitsch L; Von T; Steiner A; Tong H; Ni J; Clayton LK; Bronson R; Roberts TM; Gritsman K; Zhao JJ
    Nat Commun; 2015 Oct; 6():8501. PubMed ID: 26442967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SBR-Blood: systems biology repository for hematopoietic cells.
    Lichtenberg J; Heuston EF; Mishra T; Keller CA; Hardison RC; Bodine DM
    Nucleic Acids Res; 2016 Jan; 44(D1):D925-31. PubMed ID: 26590403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging.
    Norddahl GL; Pronk CJ; Wahlestedt M; Sten G; Nygren JM; Ugale A; Sigvardsson M; Bryder D
    Cell Stem Cell; 2011 May; 8(5):499-510. PubMed ID: 21549326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and simulation with Hybrid Functional Petri Nets of the role of interleukin-6 in human early haematopoiesis.
    Troncale S; Tahi F; Campard D; Vannier JP; Guespin J
    Pac Symp Biocomput; 2006; ():427-38. PubMed ID: 17094258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo.
    Busch K; Klapproth K; Barile M; Flossdorf M; Holland-Letz T; Schlenner SM; Reth M; Höfer T; Rodewald HR
    Nature; 2015 Feb; 518(7540):542-6. PubMed ID: 25686605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Genetic and epigenetic abnormalities in myeloproliferative neoplasms].
    Kameda T; Shide K; Shimoda K
    Rinsho Ketsueki; 2015 Jun; 56(6):614-22. PubMed ID: 26256870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Musashi 2 in hematopoiesis.
    de Andrés-Aguayo L; Varas F; Graf T
    Curr Opin Hematol; 2012 Jul; 19(4):268-72. PubMed ID: 22517588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concise review: Exploring miRNAs--toward a better understanding of hematopoiesis.
    Hong SH; Kim KS; Oh IH
    Stem Cells; 2015 Jan; 33(1):1-7. PubMed ID: 25132287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RUNX complex: reaching beyond haematopoiesis into immunity.
    Voon DC; Hor YT; Ito Y
    Immunology; 2015 Dec; 146(4):523-36. PubMed ID: 26399680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatility and nuances of the architecture of haematopoiesis - Implications for the nature of leukaemia.
    Brown G; Hughes PJ; Ceredig R; Michell RH
    Leuk Res; 2012 Jan; 36(1):14-22. PubMed ID: 22071138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.