These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28561121)

  • 1. Photo-clickable microRNA for in situ fluorescence labeling and imaging of microRNA in living cells.
    Huang L; Chen Y; Chen L; Xiao X; Wang X; Li J; Zhang Y
    Chem Commun (Camb); 2017 Jun; 53(48):6452-6455. PubMed ID: 28561121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence in situ hybridization for detection of small RNAs on frozen tissue sections.
    Silahtaroglu A
    Methods Mol Biol; 2014; 1211():95-102. PubMed ID: 25218380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA fluorescence in situ hybridization using 3-cyanovinylcarbazole modified oligodeoxyribonucleotides as photo-cross-linkable probes.
    Fujimoto K; Toyosato K; Nakamura S; Sakamoto T
    Bioorg Med Chem Lett; 2016 Nov; 26(21):5312-5314. PubMed ID: 27680586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrazole Photoclick Chemistry: Reinvestigating Its Suitability as a Bioorthogonal Reaction and Potential Applications.
    Li Z; Qian L; Li L; Bernhammer JC; Huynh HV; Lee JS; Yao SQ
    Angew Chem Int Ed Engl; 2016 Feb; 55(6):2002-6. PubMed ID: 26640085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and evaluation of photo-activatable β-diarylsydnone-l-alanines for fluorogenic photo-click cyclization of peptides.
    Yao Z; Wu X; Zhang X; Xiong Q; Jiang S; Yu Z
    Org Biomol Chem; 2019 Jul; 17(28):6777-6781. PubMed ID: 31268077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically Encoded Fluorescent RNA Sensor for Ratiometric Imaging of MicroRNA in Living Tumor Cells.
    Ying ZM; Wu Z; Tu B; Tan W; Jiang JH
    J Am Chem Soc; 2017 Jul; 139(29):9779-9782. PubMed ID: 28714696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal Labeling of Nascent RNA Using Photoclick Chemistry in Live Cells.
    Nainar S; Kubota M; McNitt C; Tran C; Popik VV; Spitale RC
    J Am Chem Soc; 2017 Jun; 139(24):8090-8093. PubMed ID: 28562039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NIR Light-Propelled Janus-Based Nanoplatform for Cytosolic-Fueled microRNA Imaging.
    Lin F; Shao Y; Wu Y; Zhang Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3713-3721. PubMed ID: 33430581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-instructed self-assembly with photo-responses for the photo-regulation of cancer cells.
    Zhou Z; Xie X; Yi Q; Yin W; Kadi AA; Li J; Zhang Y
    Org Biomol Chem; 2017 Aug; 15(33):6892-6895. PubMed ID: 28766648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Strategy for Preparing Dual-Modality Optical/PET Imaging Probes via Photo-Click Chemistry.
    Sun L; Ding J; Xing W; Gai Y; Sheng J; Zeng D
    Bioconjug Chem; 2016 May; 27(5):1200-4. PubMed ID: 27098544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live Cell MicroRNA Imaging Using Cascade Hybridization Reaction.
    Cheglakov Z; Cronin TM; He C; Weizmann Y
    J Am Chem Soc; 2015 May; 137(19):6116-9. PubMed ID: 25932784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification.
    Silahtaroglu AN; Nolting D; Dyrskjøt L; Berezikov E; Møller M; Tommerup N; Kauppinen S
    Nat Protoc; 2007; 2(10):2520-8. PubMed ID: 17947994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional DNA nanostructures for dual-color microRNA imaging in living cells via hybridization chain reaction.
    Lv MM; Wu Z; Yu RQ; Jiang JH
    Chem Commun (Camb); 2020 Jun; 56(49):6668-6671. PubMed ID: 32409815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ forming hydrogels via catalyst-free and bioorthogonal "tetrazole-alkene" photo-click chemistry.
    Fan Y; Deng C; Cheng R; Meng F; Zhong Z
    Biomacromolecules; 2013 Aug; 14(8):2814-21. PubMed ID: 23819863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-Induced Catalytic Assembly of Y-Shaped DNA and Its Application for In Situ Imaging of MicroRNAs.
    Xue C; Zhang SX; Ouyang CH; Chang D; Salena BJ; Li Y; Wu ZS
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9739-9743. PubMed ID: 29901854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells.
    Liu H; Tian T; Ji D; Ren N; Ge S; Yan M; Yu J
    Biosens Bioelectron; 2016 Nov; 85():909-914. PubMed ID: 27315515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA fluorescence in situ hybridization hybridisation using photo-cross-linkable beacon probes containing pyranocarbazole in living E. coli.
    Fujimoto K; Hashimoto M; Watanabe N; Nakamura S
    Bioorg Med Chem Lett; 2019 Aug; 29(16):2173-2177. PubMed ID: 31257081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation studies of clickable ceramides in Jurkat cell plasma membranes.
    Walter T; Schlegel J; Burgert A; Kurz A; Seibel J; Sauer M
    Chem Commun (Camb); 2017 Jun; 53(51):6836-6839. PubMed ID: 28597878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tension promoted circular probe for highly selective microRNA detection and imaging.
    Tang Y; Wang T; Chen M; He X; Qu X; Feng X
    Biosens Bioelectron; 2016 Nov; 85():151-156. PubMed ID: 27162146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated DNA tetrahedron-based molecular beacon for efficient microRNA imaging in living cells.
    Xing C; Chen Z; Lin Y; Wang M; Xu X; Dai J; Wang J; Lu C
    Chem Commun (Camb); 2021 Apr; 57(26):3251-3254. PubMed ID: 33647084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.