These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28561121)

  • 41. Import of Fluorescent RNA into Mitochondria of Living Cells.
    Zelenka J; Ježek P
    Methods Mol Biol; 2016; 1351():175-81. PubMed ID: 26530682
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isochronal visualization of transcription and proteasomal proteolysis in cell culture or in the model organism, Caenorhabditis elegans.
    von Mikecz A; Scharf A
    Methods Mol Biol; 2013; 1042():257-73. PubMed ID: 23980014
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal ball: fluorescence in situ hybridization in the age of super-resolution microscopy.
    Moraru C; Amann R
    Syst Appl Microbiol; 2012 Dec; 35(8):549-52. PubMed ID: 23140662
    [TBL] [Abstract][Full Text] [Related]  

  • 44. One-step synthesis of dual clickable nanospheres via ultrasonic-assisted click polymerization for biological applications.
    Hou Y; Cao S; Li X; Wang B; Pei Y; Wang L; Pei Z
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16909-17. PubMed ID: 25211060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Initiator and Photocatalyst-Free Visible Light Induced One-Pot Reaction: Concurrent RAFT Polymerization and CuAAC Click Reaction.
    Wang J; Wang X; Xue W; Chen G; Zhang W; Zhu X
    Macromol Rapid Commun; 2016 May; 37(9):799-804. PubMed ID: 27029002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ photopolymerization of biomaterials by thiol-yne click chemistry.
    Lomba M; Oriol L; Alcalá R; Sánchez C; Moros M; Grazú V; Serrano JL; De la Fuente JM
    Macromol Biosci; 2011 Nov; 11(11):1505-14. PubMed ID: 21793215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. General principles and methods for routine automated microRNA in situ hybridization and double labeling with immunohistochemistry.
    Singh U; Keirstead N; Wolujczyk A; Odin M; Albassam M; Garrido R
    Biotech Histochem; 2014 May; 89(4):259-66. PubMed ID: 24106971
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visualizing nucleic acids in living cells by fluorescence in vivo hybridization.
    Wiegant J; Brouwer AK; Tanke HJ; Dirks RW
    Methods Mol Biol; 2010; 659():239-46. PubMed ID: 20809316
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.
    Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH
    Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy.
    Oshima K; Shigeta A; Makino Y; Kawamura I; Okitsu T; Wada A; Tuzi S; Iwasa T; Naito A
    Photochem Photobiol Sci; 2015 Sep; 14(9):1694-702. PubMed ID: 26169449
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photoreactive polymer brushes for high-density patterned surface derivatization using a Diels-Alder photoclick reaction.
    Arumugam S; Orski SV; Locklin J; Popik VV
    J Am Chem Soc; 2012 Jan; 134(1):179-82. PubMed ID: 22191601
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-photon imaging of formaldehyde in live cells and animals utilizing a lysosome-targetable and acidic pH-activatable fluorescent probe.
    Xie X; Tang F; Shangguan X; Che S; Niu J; Xiao Y; Wang X; Tang B
    Chem Commun (Camb); 2017 Jun; 53(48):6520-6523. PubMed ID: 28573306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ECHO-liveFISH: in vivo RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues.
    Oomoto I; Suzuki-Hirano A; Umeshima H; Han YW; Yanagisawa H; Carlton P; Harada Y; Kengaku M; Okamoto A; Shimogori T; Wang DO
    Nucleic Acids Res; 2015 Oct; 43(19):e126. PubMed ID: 26101260
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical synthesis of mono- and bis-labeled pre-microRNAs.
    Pradère U; Brunschweiger A; Gebert LF; Lucic M; Roos M; Hall J
    Angew Chem Int Ed Engl; 2013 Nov; 52(46):12028-32. PubMed ID: 24115636
    [No Abstract]   [Full Text] [Related]  

  • 55. A technical note on quantum dots for multi-color fluorescence in situ hybridization.
    Müller S; Cremer M; Neusser M; Grasser F; Cremer T
    Cytogenet Genome Res; 2009; 124(3-4):351-9. PubMed ID: 19556786
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hybridization chain reaction engineered dsDNA for Cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs.
    Zhang Y; Chen Z; Tao Y; Wang Z; Ren J; Qu X
    Chem Commun (Camb); 2015 Jul; 51(57):11496-9. PubMed ID: 26097912
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MicroRNA signatures in subtypes of follicular lymphoma.
    Gebauer N; Gollub W; Stassek B; Bernard V; Rades D; Feller AC; Thorns C
    Anticancer Res; 2014 May; 34(5):2105-11. PubMed ID: 24778012
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bright, "Clickable" Porphyrins for the Visualization of Oxygenation under Ambient Light.
    Roussakis E; Li Z; Nowell NH; Nichols AJ; Evans CL
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14728-31. PubMed ID: 26510549
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology.
    Lapinsky DJ; Johnson DS
    Future Med Chem; 2015; 7(16):2143-71. PubMed ID: 26511756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.