These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2856119)

  • 41. The concept of high- and low-affinity reactions in bovine cytochrome c oxidase steady-state kinetics.
    Sinjorgo KM; Meijling JH; Muijsers AO
    Biochim Biophys Acta; 1984 Oct; 767(1):48-56. PubMed ID: 6091751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Properties and reconstitution of a cytochrome oxidase deficient in subunit III.
    Penttilä T
    Eur J Biochem; 1983 Jun; 133(2):355-61. PubMed ID: 6303785
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tissue-specific regulation of bovine heart cytochrome-c oxidase activity by ADP via interaction with subunit VIa.
    Anthony G; Reimann A; Kadenbach B
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1652-6. PubMed ID: 8383320
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in cytochrome c oxidase. Studies with the carbon monoxide inhibited enzyme.
    Capitanio N; Capitanio G; Minuto M; De Nitto E; Palese LL; Nicholls P; Papa S
    Biochemistry; 2000 May; 39(21):6373-9. PubMed ID: 10828951
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation of cytochrome oxidase from beef heart.
    Hartzell CR; Beinert H; van Gelder BF; King TE
    Methods Enzymol; 1978; 53():54-66. PubMed ID: 213689
    [No Abstract]   [Full Text] [Related]  

  • 46. Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid.
    Fry M; Green DE
    Biochem Biophys Res Commun; 1980 Apr; 93(4):1238-46. PubMed ID: 6249285
    [No Abstract]   [Full Text] [Related]  

  • 47. Characterization of electron transfer and proton translocation activities in trypsin-treated bovine heart mitochondrial cytochrome c oxidase.
    DiBiase VA; Prochaska LJ
    Arch Biochem Biophys; 1985 Dec; 243(2):668-77. PubMed ID: 3002279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Techniques for the study of bovine cytochrome-c oxidase monomer-dimer association.
    Nałecz KA; Bolli R; Azzi A
    Methods Enzymol; 1986; 126():45-64. PubMed ID: 2856139
    [No Abstract]   [Full Text] [Related]  

  • 49. Spin-label study of the relation between enzymatic activity and lipid-protein organization in reconstituted cytochrome c oxidase.
    Denes AS; Stanacev NZ
    Can J Biochem; 1978 Sep; 56(9):905-15. PubMed ID: 215292
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Redox-linked protolytic reactions in soluble cytochrome-c oxidase from beef-heart mitochondria: redox Bohr effects.
    Capitanio N; Vygodina TV; Capitanio G; Konstantinov AA; Nicholls P; Papa S
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):255-65. PubMed ID: 9030268
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adriamycin inactivates cytochrome c oxidase by exclusion of the enzyme from its cardiolipin essential environment.
    Goormaghtigh E; Brasseur R; Ruysschaert JM
    Biochem Biophys Res Commun; 1982 Jan; 104(1):314-20. PubMed ID: 6280691
    [No Abstract]   [Full Text] [Related]  

  • 52. Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase and subunit III-deficient enzyme: analysis of respiratory control and proton translocating activities.
    Wilson KS; Prochaska LJ
    Arch Biochem Biophys; 1990 Nov; 282(2):413-20. PubMed ID: 2173485
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coupling in cytochrome c oxidase.
    Kessler RJ; Blondin GA; Vande Zander H; Haworth RA; Green DE
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3662-6. PubMed ID: 198794
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conditions for optimal electron transfer activity of cytochrome c oxidase isolated from beef heart mitochondria.
    Vik SB; Capaldi RA
    Biochem Biophys Res Commun; 1980 May; 94(1):348-54. PubMed ID: 6248063
    [No Abstract]   [Full Text] [Related]  

  • 55. Proton pumping by cytochrome c oxidase is coupled to peroxidase half of its catalytic cycle.
    Vygodina TV; Capitanio N; Papa S; Konstantinov AA
    FEBS Lett; 1997 Aug; 412(3):405-9. PubMed ID: 9276436
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin.
    Paradies G; Ruggiero FM; Petrosillo G; Quagliariello E
    FEBS Lett; 1997 Apr; 406(1-2):136-8. PubMed ID: 9109403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of supernumerary subunits in mitochondrial cytochrome c oxidase.
    Planques Y; Capitanio N; Capitanio G; De Nitto E; Villani G; Papa S
    FEBS Lett; 1989 Dec; 258(2):285-8. PubMed ID: 2557239
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [A rapid and reproducible method for the high-yield preparation of cytochrome oxidase from cattle heart mitochondria].
    Simone SM
    Boll Soc Ital Biol Sper; 1978 Jun; 54(12):1093. PubMed ID: 218601
    [No Abstract]   [Full Text] [Related]  

  • 59. pH changes associated with cytochrome c oxidase reaction with H2O2. Protonation state of the peroxy and oxoferryl intermediates.
    Konstantinov AA; Capitanio N; Vygodina TV; Papa S
    FEBS Lett; 1992 Nov; 312(1):71-4. PubMed ID: 1330683
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diphosphatidylglycerol is required for optimal activity of beef heart cytochrome c oxidase.
    Vik SB; Georgevich G; Capaldi RA
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1456-60. PubMed ID: 6262802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.