These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28561750)

  • 1. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics.
    Herrero H; Outón JL; Puerto M; Sallé D; López de Ipiña K
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28561750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HiMoP: A three-component architecture to create more human-acceptable social-assistive robots : Motivational architecture for assistive robots.
    Rodríguez-Lera FJ; Matellán-Olivera V; Conde-González MÁ; Martín-Rico F
    Cogn Process; 2018 May; 19(2):233-244. PubMed ID: 29305760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Arm Co-Manipulation Architecture with Enhanced Human-Robot Communication for Large Part Manipulation.
    Ibarguren A; Eimontaite I; Outón JL; Fletcher S
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33137977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on the Industrial Robot Grasping Method Based on Multisensor Data Fusion and Binocular Vision.
    Xie S
    Comput Intell Neurosci; 2022; 2022():4443100. PubMed ID: 35665282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards IoT-Aided Human-Robot Interaction Using NEP and ROS: A Platform-Independent, Accessible and Distributed Approach.
    Coronado E; Venture G
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.
    Yap HJ; Taha Z; Dawal SZ; Chang SW
    PLoS One; 2014; 9(10):e109692. PubMed ID: 25360663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path Driven Dual Arm Mobile Co-Manipulation Architecture for Large Part Manipulation in Industrial Environments.
    Ibarguren A; Daelman P
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auto-adaptive robot-aided therapy using machine learning techniques.
    Badesa FJ; Morales R; Garcia-Aracil N; Sabater JM; Casals A; Zollo L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):123-30. PubMed ID: 24199656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot- and computer-assisted craniotomy (CRANIO): from active systems to synergistic man-machine interaction.
    Cunha-Cruz V; Follmann A; Popovic A; Bast P; Wu T; Heger S; Engelhardt M; Schmieder K; Radermacher K
    Proc Inst Mech Eng H; 2010; 224(3):441-52. PubMed ID: 20408489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceptability Study of A3-K3 Robotic Architecture for a Neurorobotics Painting.
    Tramonte S; Sorbello R; Guger C; Chella A
    Front Neurorobot; 2018; 12():81. PubMed ID: 30687057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments.
    Araújo R
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1235-49. PubMed ID: 17001984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No-code robotic programming for agile production: A new markerless-approach for multimodal natural interaction in a human-robot collaboration context.
    Halim J; Eichler P; Krusche S; Bdiwi M; Ihlenfeldt S
    Front Robot AI; 2022; 9():1001955. PubMed ID: 36274910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart Sensing and Adaptive Reasoning for Enabling Industrial Robots with Interactive Human-Robot Capabilities in Dynamic Environments-A Case Study.
    Zabalza J; Fei Z; Wong C; Yan Y; Mineo C; Yang E; Rodden T; Mehnen J; Pham QC; Ren J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisensor-based human detection and tracking for mobile service robots.
    Bellotto N; Hu H
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):167-81. PubMed ID: 19068442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical Use of Robot Manipulators as Intelligent Manufacturing Systems.
    Alhama Blanco PJ; Abu-Dakka FJ; Abderrahim M
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From training to robot behavior: towards custom scenarios for robotics in training programs for ASD.
    Gillesen JC; Barakova EI; Huskens BE; Feijs LM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975381. PubMed ID: 22275585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network.
    Budiharto W
    Comput Intell Neurosci; 2015; 2015():745823. PubMed ID: 26089863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photorealistic speech agents and facially expressive robots.
    Frenger P
    Biomed Sci Instrum; 1997; 34():191-6. PubMed ID: 9603037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey.
    Ni J; Wu L; Fan X; Yang SX
    Comput Intell Neurosci; 2016; 2016():3810903. PubMed ID: 26819582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.