These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28561970)

  • 1. AERODYNAMICS, THERMOREGULATION, AND THE EVOLUTION OF INSECT WINGS: DIFFERENTIAL SCALING AND EVOLUTIONARY CHANGE.
    Kingsolver JG; Koehl MAR
    Evolution; 1985 May; 39(3):488-504. PubMed ID: 28561970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record.
    Kukalova-Peck J
    J Morphol; 1978 Apr; 156(1):53-125. PubMed ID: 30231597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.
    Lees JJ; Dimitriadis G; Nudds RL
    PeerJ; 2016; 4():e2495. PubMed ID: 27781155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic effects of corrugation in flapping insect wings in hovering flight.
    Meng XG; Xu L; Sun M
    J Exp Biol; 2011 Feb; 214(Pt 3):432-44. PubMed ID: 21228202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EVOLUTION AND COADAPTATION OF THERMOREGULATORY BEHAVIOR AND WING PIGMENTATION PATTERN IN PIERID BUTTERFLIES.
    Kingsolver JG
    Evolution; 1987 May; 41(3):472-490. PubMed ID: 28563799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PATTERNS OF QUANTITATIVE VARIATION IN LEPIDOPTERAN WING MORPHOLOGY: THE CONVERGENT GROUPS HELICONIINAE AND ITHOMIINAE (PAPILIONOIDEA: NYMPHALIDAE).
    Strauss RE
    Evolution; 1990 Feb; 44(1):86-103. PubMed ID: 28568216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
    Wu JH; Zhang YL; Sun M
    J Exp Biol; 2009 Oct; 212(Pt 20):3313-29. PubMed ID: 19801436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss and recovery of wings in stick insects.
    Whiting MF; Bradler S; Maxwell T
    Nature; 2003 Jan; 421(6920):264-7. PubMed ID: 12529642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wing Design in Flies: Properties and Aerodynamic Function.
    Krishna S; Cho M; Wehmann HN; Engels T; Lehmann FO
    Insects; 2020 Jul; 11(8):. PubMed ID: 32718051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.
    Lehmann FO
    J Exp Biol; 2008 Jan; 211(Pt 2):224-33. PubMed ID: 18165250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local deformation and stiffness distribution in fly wings.
    Wehmann HN; Heepe L; Gorb SN; Engels T; Lehmann FO
    Biol Open; 2019 Jan; 8(1):. PubMed ID: 30642916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic yawing moment characteristics of bird wings.
    Sachs G
    J Theor Biol; 2005 Jun; 234(4):471-8. PubMed ID: 15808868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How swifts control their glide performance with morphing wings.
    Lentink D; Müller UK; Stamhuis EJ; de Kat R; van Gestel W; Veldhuis LL; Henningsson P; Hedenström A; Videler JJ; van Leeuwen JL
    Nature; 2007 Apr; 446(7139):1082-5. PubMed ID: 17460673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-skimming stoneflies and mayflies: the taxonomic and mechanical diversity of two-dimensional aerodynamic locomotion.
    Marden JH; O'Donnell BC; Thomas MA; Bye JY
    Physiol Biochem Zool; 2000; 73(6):751-64. PubMed ID: 11121348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoregulatory significance of wing melanization in Pieris butterflies (Lepidoptera: Pieridae): physics, posture, and pattern.
    Kingsolver JG
    Oecologia; 1985 Jul; 66(4):546-553. PubMed ID: 28310797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
    Wu P; Stanford BK; Sällström E; Ukeiley L; Ifju PG
    Bioinspir Biomim; 2011 Mar; 6(1):016009. PubMed ID: 21339627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.