These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28562013)

  • 21. Preparation of Robust Hydrogen Evolution Reaction Electrocatalyst WC/C by Molten Salt.
    Yan P; Wu Y; Wei X; Zhu X; Su W
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32824897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis.
    Yan Z; Cai M; Shen PK
    Sci Rep; 2013; 3():1646. PubMed ID: 23571654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous Iron-Tungsten Carbide Electrocatalyst with High Activity and Stability toward Oxygen Reduction Reaction: From the Self-Assisted Synthetic Mechanism to Its Active-Species Probing.
    Song L; Wang T; Wang Y; Xue H; Fan X; Guo H; Xia W; Gong H; He J
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3713-3722. PubMed ID: 28068063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulating Dominant Facets of Pt through Multistep Selective Anchored on WC for Enhanced Hydrogen Evolution Catalysis.
    Chu Y; Peng R; Chen Z; Li L; Zhao F; Zhu Y; Tong S; Zheng H
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36780581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. WS
    Van Nguyen T; Do HH; Tekalgne M; Van Le Q; Nguyen TP; Hong SH; Cho JH; Van Dao D; Ahn SH; Kim SY
    Nano Converg; 2021 Sep; 8(1):28. PubMed ID: 34542727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Formation Mechanism Investigations of Nano-Tungsten Carbide Powder.
    Wang C; Sun X; Long G; Xiong X; Köhler K
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1269-1277. PubMed ID: 31383128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruthenium-Tungsten Composite Catalyst for the Efficient and Contamination-Resistant Electrochemical Evolution of Hydrogen.
    Joshi U; Malkhandi S; Ren Y; Tan TL; Chiam SY; Yeo BS
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6354-6360. PubMed ID: 29431422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pt
    Yuan JH; Li LH; Zhang W; Xue KH; Wang C; Wang J; Miao XS; Zeng XC
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13896-13903. PubMed ID: 32126760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small-sized and contacting Pt-WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells.
    Wang R; Xie Y; Shi K; Wang J; Tian C; Shen P; Fu H
    Chemistry; 2012 Jun; 18(24):7443-51. PubMed ID: 22549924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction.
    Fan X; Zhou H; Guo X
    ACS Nano; 2015 May; 9(5):5125-34. PubMed ID: 25869150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unlocking Interfacial Electron Transfer of Ruthenium Phosphides by Homologous Core-Shell Design toward Efficient Hydrogen Evolution and Oxidation.
    Du H; Du Z; Wang T; Li B; He S; Wang K; Xie L; Ai W; Huang W
    Adv Mater; 2022 Sep; 34(37):e2204624. PubMed ID: 35866182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Robust Versatile Hybrid Electrocatalyst for the Oxygen Reduction Reaction.
    Wang K; Wang Y; Tong Y; Pan Z; Song S
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29356-29364. PubMed ID: 27718543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.
    Strasser P
    Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. WC@meso-Pt core-shell nanostructures for fuel cells.
    Chen ZY; Ma CA; Chu YQ; Jin JM; Lin X; Hardacre C; Lin WF
    Chem Commun (Camb); 2013 Dec; 49(99):11677-9. PubMed ID: 24190066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Species Encapsulated in Nitrogen-Doped Porous Carbon as a Highly Efficient Catalyst for the Oxygen Reduction Reaction.
    Song L; Wang T; Ma Y; Xue H; Guo H; Fan X; Xia W; Gong H; He J
    Chemistry; 2017 Mar; 23(14):3398-3405. PubMed ID: 27925316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.
    Guo S; Zhang X; Zhu W; He K; Su D; Mendoza-Garcia A; Ho SF; Lu G; Sun S
    J Am Chem Soc; 2014 Oct; 136(42):15026-33. PubMed ID: 25279704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes.
    Hassan A; Ticianelli EA
    An Acad Bras Cienc; 2018; 90(1 Suppl 1):697-718. PubMed ID: 29668800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites.
    Wang B; Tian C; Wang L; Wang R; Fu H
    Nanotechnology; 2010 Jan; 21(2):025606. PubMed ID: 19955617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron-nitrogen-doped mesoporous tungsten carbide nanostructures as oxygen reduction electrocatalysts.
    Moon JS; Lee YW; Han SB; Kwak DH; Lee KH; Park AR; Sohn JI; Cha SN; Park KW
    Phys Chem Chem Phys; 2014 Jul; 16(28):14644-50. PubMed ID: 24921219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.