BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28562023)

  • 1. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.
    Pedroso MM; Ely F; Carpenter MC; Mitić N; Gahan LR; Ollis DL; Wilcox DE; Schenk G
    Biochemistry; 2017 Jul; 56(26):3328-3336. PubMed ID: 28562023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural flexibility enhances the reactivity of the bioremediator glycerophosphodiesterase by fine-tuning its mechanism of hydrolysis.
    Hadler KS; Mitić N; Ely F; Hanson GR; Gahan LR; Larrabee JA; Ollis DL; Schenk G
    J Am Chem Soc; 2009 Aug; 131(33):11900-8. PubMed ID: 19653693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes.
    Hadler KS; Tanifum EA; Yip SH; Mitić N; Guddat LW; Jackson CJ; Gahan LR; Nguyen K; Carr PD; Ollis DL; Hengge AC; Larrabee JA; Schenk G
    J Am Chem Soc; 2008 Oct; 130(43):14129-38. PubMed ID: 18831553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure analysis of the dinuclear metal center in the bioremediator glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.
    Hadler KS; Mitić N; Yip SH; Gahan LR; Ollis DL; Schenk G; Larrabee JA
    Inorg Chem; 2010 Mar; 49(6):2727-34. PubMed ID: 20163105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ.
    Daumann LJ; McCarthy BY; Hadler KS; Murray TP; Gahan LR; Larrabee JA; Ollis DL; Schenk G
    Biochim Biophys Acta; 2013 Jan; 1834(1):425-32. PubMed ID: 22366468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bioremediator glycerophosphodiesterase employs a non-processive mechanism for hydrolysis.
    Hadler KS; Gahan LR; Ollis DL; Schenk G
    J Inorg Biochem; 2010 Feb; 104(2):211-3. PubMed ID: 19923005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Catalytically Active Binuclear Center of Glycerophosphodiesterase: A Molecular Dynamics Study.
    Paul TJ; Schenk G; Prabhakar R
    J Phys Chem B; 2018 Jun; 122(22):5797-5808. PubMed ID: 29723477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes.
    Jackson CJ; Carr PD; Liu JW; Watt SJ; Beck JL; Ollis DL
    J Mol Biol; 2007 Apr; 367(4):1047-62. PubMed ID: 17306828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe2+ metal-ion preference.
    Jackson CJ; Hadler KS; Carr PD; Oakley AJ; Yip S; Schenk G; Ollis DL
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Aug; 64(Pt 8):681-5. PubMed ID: 18678932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of Ni2+, Cu2+, and Zn2+ binding to the urease metallochaperone UreE.
    Grossoehme NE; Mulrooney SB; Hausinger RP; Wilcox DE
    Biochemistry; 2007 Sep; 46(37):10506-16. PubMed ID: 17711301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca(II) Binding Regulates and Dominates the Reactivity of a Transition-Metal-Ion-Dependent Diesterase from Mycobacterium tuberculosis.
    Pedroso MM; Larrabee JA; Ely F; Gwee SE; Mitić N; Ollis DL; Gahan LR; Schenk G
    Chemistry; 2016 Jan; 22(3):999-1009. PubMed ID: 26662456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes.
    Daumann LJ; Schenk G; Ollis DL; Gahan LR
    Dalton Trans; 2014 Jan; 43(3):910-28. PubMed ID: 24135968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction mechanism of the metallohydrolase CpsB from Streptococcus pneumoniae, a promising target for novel antimicrobial agents.
    Monteiro Pedroso M; Selleck C; Bilyj J; Harmer JR; Gahan LR; Mitić N; Standish AJ; Tierney DL; Larrabee JA; Schenk G
    Dalton Trans; 2017 Oct; 46(39):13194-13201. PubMed ID: 28573276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a phosphodiesterase capable of hydrolyzing EA 2192, the most toxic degradation product of the nerve agent VX.
    Ghanem E; Li Y; Xu C; Raushel FM
    Biochemistry; 2007 Aug; 46(31):9032-40. PubMed ID: 17630782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution combined with rational design increases activity of GpdQ toward a non-physiological substrate and alters the oligomeric structure of the enzyme.
    Yip SH; Foo JL; Schenk G; Gahan LR; Carr PD; Ollis DL
    Protein Eng Des Sel; 2011 Dec; 24(12):861-72. PubMed ID: 21979136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes.
    Jackson CJ; Carr PD; Kim HK; Liu JW; Ollis DL
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Jul; 62(Pt 7):659-61. PubMed ID: 16820687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium(II) complexes of the glycerophosphodiester-degrading enzyme GpdQ and a biomimetic N,O ligand.
    Mirams RE; Smith SJ; Hadler KS; Ollis DL; Schenk G; Gahan LR
    J Biol Inorg Chem; 2008 Sep; 13(7):1065-72. PubMed ID: 18535849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of the enzyme GpdQ on magnetite nanoparticles for organophosphate pesticide bioremediation.
    Daumann LJ; Larrabee JA; Ollis D; Schenk G; Gahan LR
    J Inorg Biochem; 2014 Feb; 131():1-7. PubMed ID: 24239906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of the A and C sites in the manganese-specific activation of MntR.
    McGuire AM; Cuthbert BJ; Ma Z; Grauer-Gray KD; Brunjes Brophy M; Spear KA; Soonsanga S; Kliegman JI; Griner SL; Helmann JD; Glasfeld A
    Biochemistry; 2013 Jan; 52(4):701-13. PubMed ID: 23298157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.