These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28562370)

  • 21. Multipole plasmon resonances in self-assembled metal hollow-nanospheres.
    Yin J; Zang Y; Xu B; Li S; Kang J; Fang Y; Wu Z; Li J
    Nanoscale; 2014 Apr; 6(8):3934-40. PubMed ID: 24162844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fano resonances in plasmonic nanoparticle aggregates.
    Mirin NA; Bao K; Nordlander P
    J Phys Chem A; 2009 Apr; 113(16):4028-34. PubMed ID: 19371111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres.
    Chow TH; Lai Y; Cui X; Lu W; Zhuo X; Wang J
    Small; 2019 Aug; 15(35):e1902608. PubMed ID: 31304668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing spin-orbit interaction of light by plasmonic nanostructures.
    Soni J; Ghosh S; Mansha S; Kumar A; Dutta Gupta S; Banerjee A; Ghosh N
    Opt Lett; 2013 May; 38(10):1748-50. PubMed ID: 23938932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modal interference in spiky nanoshells.
    Hastings SP; Qian Z; Swanglap P; Fang Y; Engheta N; Park SJ; Link S; Fakhraai Z
    Opt Express; 2015 May; 23(9):11290-311. PubMed ID: 25969225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic-Induced Transparencies in an Integrated Metaphotonic System.
    López-Rayón F; Arroyo Carrasco ML; Rodríguez-Beltrán RI; Salas-Montiel R; Téllez-Limón R
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mode-Selective Plasmon Coupling between Au Nanorods and Au Nanospheres.
    Yun S; Yoon S
    J Phys Chem Lett; 2023 Nov; 14(45):10225-10232. PubMed ID: 37931252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Symmetry breaking induced optical properties of gold open shell nanostructures.
    Ye J; Lagae L; Maes G; Borghs G; Van Dorpe P
    Opt Express; 2009 Dec; 17(26):23765-71. PubMed ID: 20052087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ideal Dimers of Gold Nanospheres for Precision Plasmonics: Synthesis and Characterization at the Single-Particle Level for Identification of Higher Order Modes.
    Yoon JH; Selbach F; Langolf L; Schlücker S
    Small; 2018 Jan; 14(4):. PubMed ID: 29178555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.
    Drozdowicz-Tomsia K; Baltar HT; Goldys EM
    Langmuir; 2012 Jun; 28(24):9071-81. PubMed ID: 22439753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy.
    Lei DY; Fernández-Domínguez AI; Sonnefraud Y; Appavoo K; Haglund RF; Pendry JB; Maier SA
    ACS Nano; 2012 Feb; 6(2):1380-6. PubMed ID: 22256972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable plasmon resonances and two-dimensional anisotropy of angular optical response of overlapped nanoshells.
    Wu T; Yang S; Li X
    Opt Express; 2013 Mar; 21(6):7811-20. PubMed ID: 23546162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation.
    Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY
    ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres.
    Jiang N; Ruan Q; Qin F; Wang J; Lin HQ
    Nanoscale; 2015 Aug; 7(29):12516-26. PubMed ID: 26139347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multipole Radiations from Large Gold Nanospheres Excited by Evanescent Wave.
    Chen J; Xiang J; Jiang S; Dai Q; Tie S; Lan S
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30708976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding How Acoustic Vibrations Modulate the Optical Response of Plasmonic Metal Nanoparticles.
    Ahmed A; Pelton M; Guest JR
    ACS Nano; 2017 Sep; 11(9):9360-9369. PubMed ID: 28817767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.