These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28562370)

  • 41. Understanding How Acoustic Vibrations Modulate the Optical Response of Plasmonic Metal Nanoparticles.
    Ahmed A; Pelton M; Guest JR
    ACS Nano; 2017 Sep; 11(9):9360-9369. PubMed ID: 28817767
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres.
    Xiao M; Chen H; Ming T; Shao L; Wang J
    ACS Nano; 2010 Nov; 4(11):6565-72. PubMed ID: 20939510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct excitation of dark plasmonic resonances under visible light at normal incidence.
    Gu Y; Qin F; Yang JK; Yeo SP; Qiu CW
    Nanoscale; 2014 Feb; 6(4):2106-11. PubMed ID: 24435813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers.
    Slaughter LS; Wu Y; Willingham BA; Nordlander P; Link S
    ACS Nano; 2010 Aug; 4(8):4657-66. PubMed ID: 20614909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods.
    Ruan Q; Fang C; Jiang R; Jia H; Lai Y; Wang J; Lin HQ
    Nanoscale; 2016 Mar; 8(12):6514-26. PubMed ID: 26935180
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres.
    Sugawa K; Akiyama T; Tanoue Y; Harumoto T; Yanagida S; Yasumori A; Tomita S; Otsuki J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21182-9. PubMed ID: 25558009
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays.
    Burrows CP; Barnes WL
    Opt Express; 2010 Feb; 18(3):3187-98. PubMed ID: 20174158
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.
    Kravets VG; Kabashin AV; Barnes WL; Grigorenko AN
    Chem Rev; 2018 Jun; 118(12):5912-5951. PubMed ID: 29863344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic Circular Dichroism Responses with High Sensitivity and Enhanced Spectral Resolution in Multipolar Plasmonic Modes of Silver Nanoparticles with Dimensions between 90 and 200 nm.
    Nagumo Y; Yao H
    J Phys Chem Lett; 2021 Sep; 12(38):9377-9383. PubMed ID: 34551247
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sideways scattering in double resonant plasmonic nanostructures for light harvesting applications.
    Achermann M
    Opt Express; 2016 Dec; 24(26):30234-30244. PubMed ID: 28059299
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of asymmetric morphology on coupling surface plasmon modes and generalized plasmon ruler.
    Zhang KJ; Da B; Ding ZJ
    Ultramicroscopy; 2018 Feb; 185():55-64. PubMed ID: 29182920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasmonic nickel nanoantennas.
    Chen J; Albella P; Pirzadeh Z; Alonso-González P; Huth F; Bonetti S; Bonanni V; Åkerman J; Nogués J; Vavassori P; Dmitriev A; Aizpurua J; Hillenbrand R
    Small; 2011 Aug; 7(16):2341-7. PubMed ID: 21678553
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multipolar and dark-mode plasmon resonances on drilled silver nano-triangles.
    Fletcher G; Arnold MD; Pedersen T; Keast VJ; Cortie MB
    Opt Express; 2015 Jul; 23(14):18002-13. PubMed ID: 26191860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization.
    El Ahrach HI; Bachelot R; Vial A; Lérondel G; Plain J; Royer P; Soppera O
    Phys Rev Lett; 2007 Mar; 98(10):107402. PubMed ID: 17358565
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.
    Lee J; Zhang Q; Park S; Choe A; Fan Z; Ko H
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):634-42. PubMed ID: 26684078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.