BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28562662)

  • 1. Active microrheology determines scale-dependent material properties of Chaetopterus mucus.
    Weigand WJ; Messmore A; Tu J; Morales-Sanz A; Blair DL; Deheyn DD; Urbach JS; Robertson-Anderson RM
    PLoS One; 2017; 12(5):e0176732. PubMed ID: 28562662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical and physicochemical characterization of the luminous mucous secreted by the marine worm Chaetopterus sp.
    Deheyn DD; Enzor LA; Dubowitz A; Urbach JS; Blair D
    Physiol Biochem Zool; 2013; 86(6):702-5. PubMed ID: 24241067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Analysis of the Luminous Slime Secreted by the Marine Worm Chaetopterus (Annelida, Polychaeta).
    Branchini BR; Behney CE; Southworth TL; Rawat R; Deheyn DD
    Photochem Photobiol; 2014 Jan; 90(1):247-51. PubMed ID: 24004150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A foam model highlights the differences of the macro- and microrheology of respiratory horse mucus.
    Gross A; Torge A; Schaefer UF; Schneider M; Lehr CM; Wagner C
    J Mech Behav Biomed Mater; 2017 Jul; 71():216-222. PubMed ID: 28347956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic wire active microrheology of human respiratory mucus.
    Radiom M; Hénault R; Mani S; Iankovski AG; Norel X; Berret JF
    Soft Matter; 2021 Aug; 17(32):7585-7595. PubMed ID: 34341819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different macro- and micro-rheological properties of native porcine respiratory and intestinal mucus.
    Bokkasam H; Ernst M; Guenther M; Wagner C; Schaefer UF; Lehr CM
    Int J Pharm; 2016 Aug; 510(1):164-7. PubMed ID: 27311353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that ferritin is associated with light production in the mucus of the marine worm Chaetopterus.
    Rawat R; Deheyn DD
    Sci Rep; 2016 Nov; 6():36854. PubMed ID: 27830745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The yielding behaviour of human mucus.
    Kavishvar D; Ramachandran A
    Adv Colloid Interface Sci; 2023 Dec; 322():103049. PubMed ID: 38039907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mucus from human bronchial epithelial cultures: rheology and adhesion across length scales.
    Jory M; Donnarumma D; Blanc C; Bellouma K; Fort A; Vachier I; Casanellas L; Bourdin A; Massiera G
    Interface Focus; 2022 Dec; 12(6):20220028. PubMed ID: 36330325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering mucus rheology to "solidify" human mucus at the nanoscale.
    Lai SK; Wang YY; Cone R; Wirtz D; Hanes J
    PLoS One; 2009; 4(1):e4294. PubMed ID: 19173002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients.
    Tauwald SM; Michel J; Brandt M; Vielsmeier V; Stemmer C; Krenkel L
    Multidiscip Respir Med; 2023 Jan; 18(1):923. PubMed ID: 37908973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Microfluidics and Microrheology to Determine Rheological Properties of Soft Matter during Repeated Phase Transitions.
    Wehrman MD; Milstrey MJ; Lindberg S; Schultz KM
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction: Active microrheology determines scale-dependent material properties of Chaetopterus mucus.
    Weigand WJ; Messmore A; Tu J; Morales-Sanz A; Blair DL; Deheyn DD; Urbach JS; Robertson-Anderson RM
    PLoS One; 2018; 13(8):e0203102. PubMed ID: 30138489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially resolved microrheology of heterogeneous biopolymer hydrogels using covalently bound microspheres.
    Wong LH; Kurniawan NA; Too HP; Rajagopalan R
    Biomech Model Mechanobiol; 2014 Aug; 13(4):839-49. PubMed ID: 24158353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced microscopic dynamics in mucus gels under a mechanical load in the linear viscoelastic regime.
    Larobina D; Pommella A; Philippe AM; Nagazi MY; Cipelletti L
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34728565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotating magnetic particle microrheometry in biopolymer fluid dynamics: mucus microrheology.
    Besseris GJ; Yeates DB
    J Chem Phys; 2007 Sep; 127(10):105106. PubMed ID: 17867785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active microrheology of protein condensates using colloidal probe-AFM.
    Li X; van der Gucht J; Erni P; de Vries R
    J Colloid Interface Sci; 2023 Feb; 632(Pt B):357-366. PubMed ID: 36436394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.
    Nalam PC; Gosvami NN; Caporizzo MA; Composto RJ; Carpick RW
    Soft Matter; 2015 Nov; 11(41):8165-78. PubMed ID: 26337502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles.
    Ruiz-Pulido G; Medina DI
    Eur J Pharm Biopharm; 2021 Feb; 159():123-136. PubMed ID: 33387633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.