These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 28562775)

  • 1. Acetylcholine produces contractions mediated by the cyclooxygenase pathway in arterial vessels in the Chilean frog (Calyptocephalella gayi).
    Moraga FA; Urriola-Urriola N
    Braz J Biol; 2017 Nov; 77(4):781-786. PubMed ID: 28562775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholine produces contraction mediated by cyclooxigenase pathway in arterial vessels in the marine fish (Isacia conceptionis).
    Moraga FA; Urriola-Urriola N
    Braz J Biol; 2015 May; 75(2):362-7. PubMed ID: 26132019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular function in arteries of intertidal fish Girella laevifrons (Kyphosidae).
    Moraga FA; Urriola-Urriola N
    Braz J Biol; 2014 Aug; 74(3):739-43. PubMed ID: 25296227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine-induced contractions in the perforating branch of the human internal mammary artery: protective role of the vascular endothelium.
    Pesić S; Grbović L; Jovanović A
    Pharmacology; 2002 Apr; 64(4):182-8. PubMed ID: 11893898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of NO in arterial vascular function of intertidal fish (Girella laevifrons) and marine fish (Isacia conceptionis).
    Moraga FA; Urriola-Urriola N
    Braz J Biol; 2016 Jun; 76(2):500-5. PubMed ID: 27058601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine-induced vasoconstrictor response of coronary vessels in rats: a possible contribution of M2 muscarinic receptor activation.
    Nasa Y; Kume H; Takeo S
    Heart Vessels; 1997; 12(4):179-91. PubMed ID: 9559968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of cyclooxygenase-dependent pathway in contraction of isolated ileum by urotensin II.
    Horie S; Tsurumaki Y; Someya A; Hirabayashi T; Saito T; Okuma Y; Nomura Y; Murayama T
    Peptides; 2005 Feb; 26(2):323-9. PubMed ID: 15629545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine-induced contractions in isolated rabbit pulmonary arteries: role of thromboxane A2.
    Altiere RJ; Kiritsy-Roy JA; Catravas JD
    J Pharmacol Exp Ther; 1986 Feb; 236(2):535-41. PubMed ID: 3080588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of muscarinic receptors in renal response to acetylcholine.
    Yun JC; Oriji G; Gill JR; Coleman BR; Peters J; Keiser H
    Am J Physiol; 1993 Jul; 265(1 Pt 2):F46-52. PubMed ID: 8342614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aging and hypertension on the participation of endothelium-derived constricting factor (EDCF) in norepinephrine-induced contraction of rat femoral artery.
    Líšková S; Petrová M; Karen P; Kuneš J; Zicha J
    Eur J Pharmacol; 2011 Sep; 667(1-3):265-70. PubMed ID: 21640100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acetylcholine in the pulmonary circulation of rabbits.
    Catravas JD; Buccafusco JJ; El Kashef H
    J Pharmacol Exp Ther; 1984 Nov; 231(2):236-41. PubMed ID: 6491979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of acetylcholine-induced relaxation in dog external and internal ophthalmic arteries.
    Wang Y; Okamura T; Toda N
    Exp Eye Res; 1993 Sep; 57(3):275-81. PubMed ID: 8224015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-dependent contraction induced by acetylcholine in the chicken ductus arteriosus involves cyclooxygenase-1 activation and TP receptor stimulation.
    Schuurman MJ; Villamor E
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Sep; 157(1):28-34. PubMed ID: 20488253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscarinic-mediated vasoconstriction in human, rat and sheep umbilical cords and related vasoconstriction mechanisms.
    Chen N; Lv J; Bo L; Li N; Wu C; Yin X; Li J; Tao J; Chen J; He Y; Huang S; Xiao J; Mao C; Xu Z
    BJOG; 2015 Nov; 122(12):1630-9. PubMed ID: 25403992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairment of acetylcholine-mediated endothelium-dependent relaxation in isolated parotid artery of the alloxan-induced diabetic rabbit.
    Roganović J; Radenković M; Tanić N; Tanić N; Petrović N; Stojić D
    Eur J Oral Sci; 2011 Oct; 119(5):352-60. PubMed ID: 21896051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclooxygenase involvement in thromboxane-dependent contraction in rat mesenteric resistance arteries.
    Bolla M; You D; Loufrani L; Levy BI; Levy-Toledano S; Habib A; Henrion D
    Hypertension; 2004 Jun; 43(6):1264-9. PubMed ID: 15096470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thromboxane A2/endoperoxide receptors mediate cholinergic constriction of rabbit lung microvessels.
    Shirai M; Ninomiya I; Sada K
    J Appl Physiol (1985); 1992 Mar; 72(3):1179-85. PubMed ID: 1533210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The senescence-accelerated mouse (SAM-P8) as a model for the study of vascular functional alterations during aging.
    Lloréns S; de Mera RM; Pascual A; Prieto-Martín A; Mendizábal Y; de Cabo C; Nava E; Jordán J
    Biogerontology; 2007 Dec; 8(6):663-72. PubMed ID: 17786580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective inhibitors differentially affect cyclooxygenase-dependent pial arteriolar responses in newborn pigs.
    Domoki F; Nagy K; Temesvári P; Bari F
    Pediatr Res; 2005 Jun; 57(6):853-7. PubMed ID: 15845634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostanoid inhibition potentiates vasoconstrictor response to acetylcholine in dog lung.
    Catravas JD; Hofman WF; Ehrhart IC
    J Appl Physiol (1985); 1986 Sep; 61(3):1035-40. PubMed ID: 3759743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.