BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 28563416)

  • 1. GEOGRAPHIC POPULATION STRUCTURE AND SPECIES DIFFERENCES IN MITOCHONDRIAL DNA OF MOUTHBROODING MARINE CATFISHES (ARIIDAE) AND DEMERSAL SPAWNING TOADFISHES (BATRACHOIDIDAE).
    Avise JC; Reeb CA; Saunders NC
    Evolution; 1987 Sep; 41(5):991-1002. PubMed ID: 28563416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular zoogeography of freshwater fishes in the southeastern United States.
    Bermingham E; Avise JC
    Genetics; 1986 Aug; 113(4):939-65. PubMed ID: 17246340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHYLOGEOGRAPHIC PATTERNS IN MITOCHONDRIAL DNA OF THE DESERT TORTOISE (XEROBATES AGASSIZI), AND EVOLUTIONARY RELATIONSHIPS AMONG THE NORTH AMERICAN GOPHER TORTOISES.
    Lamb T; Avise JC; Gibbons JW
    Evolution; 1989 Jan; 43(1):76-87. PubMed ID: 28568493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PHYLOGEOGRAPHIC STRUCTURE IN MITOCHONDRIAL DNA OF THE LAKE WHITEFISH (COREGONUS CLUPEAFORMIS) AND ITS RELATION TO PLEISTOCENE GLACIATIONS.
    Bernatchez L; Dodson JJ
    Evolution; 1991 Jun; 45(4):1016-1035. PubMed ID: 28564052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Complete Mitochondrial Genome of the Spotted Catfish
    Yang M; Yang Z; Liu C; Lee X; Zhu K
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex patterns of genetic population structure in the mouthbrooding marine catfish,
    Portnoy DS; O'Leary SJ; Fields AT; Hollenbeck CM; Grubbs RD; Peterson CT; Gardiner JM; Adams DH; Falterman B; Drymon JM; Higgs JM; Pulster EL; Wiley TR; Murawski SA
    Ecol Evol; 2024 Jun; 14(6):e11514. PubMed ID: 38859886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial DNA differentiation during the speciation process in Peromyscus.
    Avise JC; Shapira JF; Daniel SW; Aquadro CF; Lansman RA
    Mol Biol Evol; 1983 Dec; 1(1):38-56. PubMed ID: 6400647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Zealand triplefin fishes (family Tripterygiidae): contrasting population structure and mtDNA diversity within a marine species flock.
    Hickey AJ; Lavery SD; Hannan DA; Baker CS; Clements KD
    Mol Ecol; 2009 Feb; 18(4):680-96. PubMed ID: 19215584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of opercle bone shape along a macrohabitat gradient: species identification using mtDNA and geometric morphometric analyses in neotropical sea catfishes (Ariidae).
    Stange M; Aguirre-Fernández G; Cooke RG; Barros T; Salzburger W; Sánchez-Villagra MR
    Ecol Evol; 2016 Aug; 6(16):5817-30. PubMed ID: 27547357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematics and biogeography of New World sea catfishes (Siluriformes: Ariidae) as inferred from mitochondrial, nuclear, and morphological evidence.
    Betancur-R R; Acero P A; Bermingham E; Cooke R
    Mol Phylogenet Evol; 2007 Oct; 45(1):339-57. PubMed ID: 17475516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are larvae of demersal fishes plankton or nekton?
    Leis JM
    Adv Mar Biol; 2006; 51():57-141. PubMed ID: 16905426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monogenoidea (Polyonchoinea: Dactylogyridae) parasitizing the gills of marine catfish (Siluriformes: Ariidae) inhabiting the Atlantic Amazon Coast of Brazil.
    Domingues MV; Soares GB; Watanabe A
    Zootaxa; 2016 Jun; 4127(2):301-26. PubMed ID: 27395625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic characterization of Clupisoma garua (Hamilton 1822) from six Indian populations using mtDNA cytochrome b gene.
    Saraswat D; Lakra WS; Nautiyal P; Goswami M; Shyamakant K; Malakar A
    Mitochondrial DNA; 2014 Feb; 25(1):70-7. PubMed ID: 23676141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovering cryptic diversity and ancient drainage patterns in eastern North America: historical biogeography of the Notropis rubellus species group (Teleostei: Cypriniformes).
    Berendzen PB; Simons AM; Wood RM; Dowling TE; Secor CL
    Mol Phylogenet Evol; 2008 Feb; 46(2):721-37. PubMed ID: 17716926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geographic variation within a tandemly repeated mitochondrial DNA D-loop region of a North American freshwater fish, Pylodictis olivaris.
    Padhi A
    Gene; 2014 Mar; 538(1):63-8. PubMed ID: 24440244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme intraspecific mitochondrial DNA sequence divergence in Galaxias maculatus (Osteichthys: Galaxiidae), one of the world's most widespread freshwater fish.
    Waters JM; Burridge CP
    Mol Phylogenet Evol; 1999 Feb; 11(1):1-12. PubMed ID: 10082606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trans-Arctic dispersals and the evolution of a circumpolar marine fish species complex, the capelin (Mallotus villosus).
    Dodson JJ; Tremblay S; Colombani F; Carscadden JE; Lecomte F
    Mol Ecol; 2007 Dec; 16(23):5030-43. PubMed ID: 17944848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MITOCHONDRIAL DNA VARIATION IN THE FIELD VOLE (MICROTUS AGRESTIS): REGIONAL POPULATION STRUCTURE AND COLONIZATION HISTORY.
    Jaarola M; Tegelström H
    Evolution; 1996 Oct; 50(5):2073-2085. PubMed ID: 28565579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial DNA variation among red snapper (Lutjanus campechanus) from the Gulf of Mexico.
    Camper JD; Barber RC; Richardson LR; Gold JR
    Mol Mar Biol Biotechnol; 1993 Jun; 2(3):154-61. PubMed ID: 8103412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MITOCHONDRIAL DNA DIVERSITY IN THE SEA URCHINS STRONGYLOCENTROTUS PURPURATUS AND S. DROEBACHIENSIS.
    Palumbi SR; Wilson AC
    Evolution; 1990 Mar; 44(2):403-415. PubMed ID: 28564372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.