These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28564008)

  • 1. HISTORICAL FACTORS AND ANISOPLETHIC POPULATION STRUCTURE IN TRISTYLOUS PONTEDERIA CORDATA: A REASSESSMENT.
    Morgan MT; Barrett SCH
    Evolution; 1988 May; 42(3):496-504. PubMed ID: 28564008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architectural constraints, male fertility variation and biased floral morph ratios in tristylous populations.
    da Cunha NL; Barrett SCH
    Heredity (Edinb); 2019 Nov; 123(5):694-706. PubMed ID: 31142814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. POPULATION STRUCTURE AND MORPH-SPECIFIC FITNESS DIFFERENCES IN TRISTYLOUS LYTHRUM SALICARIA.
    Ågren J; Ericson L
    Evolution; 1996 Feb; 50(1):126-139. PubMed ID: 28568877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic control of floral morph in tristylous Pickerelweed (Pontederia cordata L.).
    Gettys LA; Wofford DS
    J Hered; 2008; 99(5):558-63. PubMed ID: 18499647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pollinator foraging behavior and pollen collection on the floral morphs of tristylous Pontederia cordata L.
    Wolfe LM; Barrett SC
    Oecologia; 1987 Dec; 74(3):347-351. PubMed ID: 28312471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Floral variation and environmental heterogeneity in a tristylous clonal aquatic of the Pantanal wetlands of Brazil.
    Leme da Cunha N; Fischer E; Lorenz-Lemke AP; Barrett SC
    Ann Bot; 2014 Dec; 114(8):1637-49. PubMed ID: 25180289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in expression of trimorphic incompatibility in Pontederia cordata L. (Pontederiaceae).
    Barrett SC; Anderson JM
    Theor Appl Genet; 1985 Jul; 70(4):355-62. PubMed ID: 24253005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of distyly from tristyly in populations of Oxalis alpina (Oxalidaceae) in the Sky Islands of the Sonoran Desert.
    Weller SG; Domínguez CA; Molina-Freaner FE; Fornoni J; Lebuhn G
    Am J Bot; 2007 Jun; 94(6):972-85. PubMed ID: 21636466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. POLLEN DISCOUNTING AND THE SPREAD OF A SELFING VARIANT IN TRISTYLOUS EICHHORNIA PANICULATA: EVIDENCE FROM EXPERIMENTAL POPULATIONS.
    Kohn JR; Barrett SCH
    Evolution; 1994 Oct; 48(5):1576-1594. PubMed ID: 28568426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ON THE DARWINIAN HYPOTHESIS OF THE ADAPTIVE SIGNIFICANCE OF TRISTYLY.
    Barrett SCH; Glover DE
    Evolution; 1985 Jul; 39(4):766-774. PubMed ID: 28561357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of inbreeding depression and mating system in the evolution of heterostyly.
    Weber JJ; Weller SG; Sakai AK; Tsyusko OV; Glenn TC; Domínguez CA; Molina-Freaner FE; Fornoni J; Tran M; Nguyen N; Nguyen K; Tran LK; Joice G; Harding E
    Evolution; 2013 Aug; 67(8):2309-22. PubMed ID: 23888853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Female reproductive success and the evolution of mating-type frequencies in tristylous populations.
    Hodgins KA; Barrett SC
    New Phytol; 2006; 171(3):569-80. PubMed ID: 16866959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in style morph frequencies in tristylous Lythrum salicaria in the Iberian Peninsula: the role of geographical and demographic factors.
    Costa J; Castro S; Loureiro J; Barrett SC
    Ann Bot; 2016 Feb; 117(2):331-40. PubMed ID: 26658100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pollinator visitation in populations of tristylous Eichhornia paniculata in northeastern Brazil.
    Husband BC; Barrett SC
    Oecologia; 1992 Mar; 89(3):365-371. PubMed ID: 28313085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FACTORS INFLUENCING FREQUENCY OF THE MID-STYLED MORPH IN TRISTYLOUS POPULATIONS OF OXALIS ALPINA.
    Weller SG
    Evolution; 1986 Mar; 40(2):279-289. PubMed ID: 28556051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High herkogamy but low reciprocity characterizes isoplethic populations of Jasminum malabaricum, a species with stigma-height dimorphism.
    Ganguly S; Barua D
    Plant Biol (Stuttg); 2020 Sep; 22(5):899-909. PubMed ID: 32352185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Where are the seeds? Lack of floral morphs prevent seed production by the tristylous
    Wansell SNL; Geerts S; Coetzee JA
    Ecol Evol; 2022 Oct; 12(10):e9366. PubMed ID: 36203638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STOCHASTIC LOSS OF STYLE MORPHS FROM POPULATIONS OF TRISTYLOUS LYTHRUM SALICARIA AND DECODON VERTICILLATUS (LYTHRACEAE).
    Eckert CG; Barrett SCH
    Evolution; 1992 Aug; 46(4):1014-1029. PubMed ID: 28564411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlated evolution of floral morphology and mating-type frequencies in a sexually polymorphic plant.
    Barrett SC; Harder LD; Cole WW
    Evolution; 2004 May; 58(5):964-75. PubMed ID: 15212378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous daffodil.
    Hodgins KA; Barrett SC
    Genet Res (Camb); 2008 Feb; 90(1):3-15. PubMed ID: 18289396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.