These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28564148)

  • 21. Premeiotic endoreplication is essential for obligate parthenogenesis in geckos.
    Dedukh D; Altmanová M; Klíma J; Kratochvíl L
    Development; 2022 Apr; 149(7):. PubMed ID: 35388415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PARTHENOGENESIS IN THE TROPICAL GEKKONID LIZARD, NACTUS ARNOUXII (SAURIA: GEKKONIDAE).
    Moritz C
    Evolution; 1987 Nov; 41(6):1252-1266. PubMed ID: 28563615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MITOCHONDRIAL-DNA ANALYSES AND THE ORIGIN AND RELATIVE AGE OF PARTHENOGENETIC LIZARDS (GENUS CNEMIDOPHORUS). IV. NINE SEXLINEATUS-GROUP UNISEXUALS.
    Densmore LD; Moritz CC; Wright JW; Brown WM
    Evolution; 1989 Aug; 43(5):969-983. PubMed ID: 28564158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. POLYPHYLETIC ORIGINS OF ASEXUALITY IN DAPHNIA PULEX. II. MITOCHONDRIAL-DNA VARIATION.
    Crease TJ; Stanton DJ; Hebert PDN
    Evolution; 1989 Aug; 43(5):1016-1026. PubMed ID: 28564160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytogenetic and genetic trends in the evolution of unisexual lizards.
    Kupriyanova L
    Cytogenet Genome Res; 2009; 127(2-4):273-9. PubMed ID: 20339288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ANDROGENETICS AND TRIPLOIDS FROM AN INTERACTING PARTHENOGENETIC HYBRID AND ITS ANCESTORS IN STICK INSECTS.
    Tinti F; Scali V
    Evolution; 1996 Jun; 50(3):1251-1258. PubMed ID: 28565277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mode of origin differentially influences the fitness of parthenogenetic freshwater snails.
    Johnson SG
    Proc Biol Sci; 2005 Oct; 272(1577):2149-53. PubMed ID: 16191628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromosomal evidence for a hybrid origin of diploid parthenogenetic females from the unisexual-bisexual Lepidodactylus lugubris complex (Reptilia, Gekkonidae).
    Volobouev V; Pasteur G; Ineich I; Dutrillaux B
    Cytogenet Cell Genet; 1993; 63(3):194-9. PubMed ID: 8485997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Population structure, parasitism, and survivorship of sexual and autodiploid parthenogenetic Campeloma limum.
    Johnson SG
    Evolution; 2000 Feb; 54(1):167-75. PubMed ID: 10937193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. THE EVOLUTIONARY HISTORY OF PARTHENOGENETIC CNEMIDOPHORUS LEMNISCATUS (SAURIA, TEIIDAE). I. EVIDENCE FOR A HYBRID ORIGIN.
    Sites JW; Peccinini-Seale DM; Moritz C; Wright JW; Brown WM
    Evolution; 1990 Jul; 44(4):906-921. PubMed ID: 28569029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial DNA suggests a single maternal origin for the widespread triploid parthenogenetic pest species, Paratanytarsus grimmii, but microsatellite variation shows local endemism.
    Carew M; Gagliardi B; Hoffmann AA
    Insect Sci; 2013 Jun; 20(3):345-57. PubMed ID: 23955886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating hybridization in the parthenogenetic New Zealand stick insect Acanthoxyla (Phasmatodea) using single-copy nuclear loci.
    Buckley TR; Attanayake D; Park D; Ravindran S; Jewell TR; Normark BB
    Mol Phylogenet Evol; 2008 Jul; 48(1):335-49. PubMed ID: 18367411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction between founder effect and selection during biological invasion in an aquatic plant.
    Kliber A; Eckert CG
    Evolution; 2005 Sep; 59(9):1900-13. PubMed ID: 16261728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MITOCHONDRIAL DNA ANALYSES AND THE ORIGIN AND RELATIVE AGE OF PARTHENOGENETIC CNEMIDOPHORUS: PHYLOGENETIC CONSTRAINTS ON HYBRID ORIGINS.
    Moritz C; Wright JW; Brown WM
    Evolution; 1992 Feb; 46(1):184-192. PubMed ID: 28564972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. THE ORIGIN AND GENETIC BASIS OF OBLIGATE PARTHENOGENESIS IN DAPHNIA PULEX.
    Innes DJ; Hebert PDN
    Evolution; 1988 Sep; 42(5):1024-1035. PubMed ID: 28581165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MITOCHONDRIAL-DNA DIVERSITY AND THE ORIGIN OF THE MENIDIA CLARKHUBBSI COMPLEX OF UNISEXUAL FISHES (ATHERINIDAE).
    Echelle AA; Dowling TE; Moritz CC; Brown WM
    Evolution; 1989 Aug; 43(5):984-993. PubMed ID: 28564153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic polymorphism and evolution in parthenogenetic animals. I. Polyploid curculionidae.
    Suomalainen E; Saura A
    Genetics; 1973 Jul; 74(3):489-508. PubMed ID: 17248626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates.
    Sinclair EA; Pramuk JB; Bezy RL; Crandall KA; Sites JW
    Evolution; 2010 May; 64(5):1346-57. PubMed ID: 19922448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geographical parthenogenesis in the brown alga Scytosiphon lomentaria (Scytosiphonaceae): Sexuals in warm waters and parthenogens in cold waters.
    Hoshino M; Hiruta SF; Croce ME; Kamiya M; Jomori T; Wakimoto T; Kogame K
    Mol Ecol; 2021 Nov; 30(22):5814-5830. PubMed ID: 34437743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parthenogenesis without costs in a grasshopper with hybrid origins.
    Kearney MR; Jasper ME; White VL; Aitkenhead IJ; Blacket MJ; Kong JD; Chown SL; Hoffmann AA
    Science; 2022 Jun; 376(6597):1110-1114. PubMed ID: 35653484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.