These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28564399)

  • 1. GENETIC VARIATION IN CACTOPHILIC DROSOPHILA FOR OVIPOSITION ON NATURAL YEAST SUBSTRATES.
    Barker JSF
    Evolution; 1992 Aug; 46(4):1070-1083. PubMed ID: 28564399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotype-specific habitat selection for oviposition sites in the cactophilic species Drosophila buzzatii.
    Barker JS; Starmer WT; Fogleman JC
    Heredity (Edinb); 1994 Apr; 72 ( Pt 4)():384-95. PubMed ID: 8200815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental effects and the genetics of oviposition site preference for natural yeast substrates in Drosophila buzzatii.
    Barker JS; Starmer WT
    Hereditas; 1999; 130(2):145-75. PubMed ID: 10479998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allozyme genotypes of Drosophila buzzatii: feeding and oviposition preferences for microbial species, and habitat selection.
    Barker JS; Vacek DC; East PD; Starmer WT
    Aust J Biol Sci; 1986; 39(1):47-58. PubMed ID: 3778358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oviposition acceptance and fecundity schedule in the cactophilic sibling species Drosophila buzzatii and D. koepferae on their natural hosts.
    Fanara JJ; Hasson E
    Evolution; 2001 Dec; 55(12):2615-9. PubMed ID: 11831675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in body size and life history traits in Drosophila aldrichi and D. buzzatii from a latitudinal cline in eastern Australia.
    Loeschcke V; Bundgaard J; Barker JS
    Heredity (Edinb); 2000 Nov; 85 Pt 5():423-33. PubMed ID: 11122420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and microgeographic variation in allozyme frequencies in a natural population of Drosophila buzzatii.
    Barker JS; East PD; Weir BS
    Genetics; 1986 Mar; 112(3):577-611. PubMed ID: 3957005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vectoring of cactophilic yeasts by Drosophila.
    Ganter PF
    Oecologia; 1988 Apr; 75(3):400-404. PubMed ID: 28312688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotype by environment interactions in viability and developmental time in populations of cactophilic Drosophila.
    Fanara JJ; Folguera G; Iriarte PF; Mensch J; Hasson E
    J Evol Biol; 2006 May; 19(3):900-8. PubMed ID: 16674586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential responses to artificial selection on oviposition site preferences in Drosophila melanogaster and D. simulans.
    Soto EM; Betti MI; Hurtado J; Hasson E
    Insect Sci; 2015 Dec; 22(6):821-8. PubMed ID: 25263841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence of ecologically similar colonising species III. Drosophila aldrichi and D. buzzatii: larval performance on, and adult preference for, three Opuntia cactus species.
    Krebs RA; Barker JS; Armstrong TP
    Oecologia; 1992 Dec; 92(3):362-372. PubMed ID: 28312602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal latitudinal clines in oviposition behavior ofPapilio glaucus andP. canadensis across the Great Lakes hybrid zone: possible sex-linkage of oviposition preferences.
    Scriber JM; Giebink BL; Snider D
    Oecologia; 1991 Sep; 87(3):360-368. PubMed ID: 28313263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of variation in wing morphology in the cactophilic Drosophila buzzatii and its sibling D. koepferae.
    Carreira VP; Soto IM; Hasson E; Fanara JJ
    J Evol Biol; 2006 Jul; 19(4):1275-82. PubMed ID: 16780528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oviposition site preferences and performance in natural resources in the human commensals Drosophila melanogaster and D. simulans.
    Soto EM; Soto IM; Cortese MD; Hasson E
    Fly (Austin); 2011; 5(2):102-9. PubMed ID: 21540639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter and intraspecific variation in female remating propensity in the cactophilic sibling species Drosophila buzzatii and D. koepferae.
    Hurtado J; Hasson E
    J Insect Physiol; 2013 May; 59(5):569-76. PubMed ID: 23542152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting Plasticity in Ovariole Number Induced by A Dietary Effect of the Host Plants between Cactophilic Drosophila Species.
    Peluso D; Soto EM; Kreiman L; Hasson E; Mensch J
    Insects; 2016 May; 7(2):. PubMed ID: 27213456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottlenecks, population differentiation and apparent selection at microsatellite loci in Australian Drosophila buzzatii.
    Barker JS; Frydenberg J; González J; Davies HI; Ruiz A; Sørensen JG; Loeschcke V
    Heredity (Edinb); 2009 Apr; 102(4):389-401. PubMed ID: 19142202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft selection and quantitative genetic variation: a laboratory experiment.
    García-Dorado A; Martin P; García N
    Heredity (Edinb); 1991 Jun; 66 ( Pt 3)():313-23. PubMed ID: 1908838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breeding structure of natural populations of Drosophila buzzatii: effects of the distribution of larval substrates.
    Thomas RH; Barker JS
    Heredity (Edinb); 1990 Jun; 64 ( Pt 3)():355-65. PubMed ID: 2358367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating density dependence into the oviposition preference-offspring performance hypothesis.
    Ellis AM
    J Anim Ecol; 2008 Mar; 77(2):247-56. PubMed ID: 18194264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.